[DRAFT 2019.10.18] Paper 4725-2020:
SAS® packages - the way to share
(a how to)

Bartosz Jabtonski
Warsaw University of Technology / Citibank Europe PLC Poland

ABSTRACT

When working on Base SAS® code, especially when it becomes complex, there is a point in time when
a developer decides to break it into small pieces. The developer creates separate files for macros,
formats/informats, and for functions or data too. Eventually the code is ready and tested and it is time
for the deployment. The issue is that the code had been written on a local Windows machine and the
deployment is on a remote Linux server. Folders and files have to be moved in the proper structure, code
has to be run in the right order and not mixed up. Moreover it is not the developer who is deploying...
small challenge, isn't it?

How nice it would be to have it all (i.e. the code and its structure) wrapped up in a sin-
gle file - a portable SAS package - which could be copied and deployed with a one-liner like:
%loadPackage (MyPackage)?

In this article an idea of how to create such a "SAS-package” in a fast and convenient way will be
proposed/shared. We will discuss:

e a concept of how to build a package,
e the tools required to do so, and
e a "how to” of the process (i.e. generating packages, loading, and using them).

The intended readers for the following document are intermediate SAS users (i.e. with good knowl-
edge of Base SAS and practice in macro programming, see [[1]]) who want to learn how to share their
code with others.

INTRODUCTION and CONTEXT

In the world of programmers, software developers, and "computer people” the concept of a package is
well known and common one. To give an evidence of this statement let us consider three very popular
examples the Linux, the Python, and the R software, and as an endorsement the following quotes.
According to [5]]:

In Linux distributions, a "package” refers to a compressed file archive containing all

of the files that come with a particular application. [...] Most packages also contain

installation instructions for the 0S, as well as a list of any other packages that are

dependencies (prerequisites required for installation).

Common types of Linux packages include .deb, .rpm, and .tgz. Since Linux

packages do not usually contain the dependencies necessary to install them, many

Linux distributions use package managers that automatically read dependencies

files and download the packages needed before proceeding with the installation.

According to [4]:
Modular programming refers to the process of breaking a large, unwieldy program-
ming task into separate, smaller, more manageable subtasks or modules. Individual

modules can then be cobbled together like building blocks to create a larger appli-

cation. Packages allow for a hierarchical structuring of the module [...].
1

SAS PACKAGES - THE WAY TO SHARE (DRAFT 2019.10.18) 2

According to [3]:

In R, the fundamental unit of shareable code is the package. A package bundles
together code, data, documentation, and tests, and is easy to share with others. As
of January 2015, there were over 6,000 packages available on the Comprehensive
R Archive Network, or CRAN, the public clearing house for R packages. This huge
variety of packages is one of the reasons that R is so successful: the chances are
that someone has already solved a problem that you're working on, and you can
benefit from their work by downloading their package. [As of October 2019, there
were over 15,000 packages available on the Comprehensive R Archive Network!]

WHAT IS a SAS PACKAGE?

A SAS packageE]is an automatically generated, single, stand alone zip file containing organised and
ordered code structures, created by the developer and extended with additional automatically gener-
ated "driving” files (i.e. descriptor, metadata, load, unload, and help files).

The purpose of a package is to be a simple, and easy in access, code sharing medium, which
will allow: on the one hand, to separate the code’s complex dependencies created by the developer
from the user experience with the final product and, on the other hand, reduce developer’s and user’s
unnecessary frustration related to a remote deployment process.

To create a package the developer must prepare the code files and a description file, fit them into
a structured form (see the next section for details) and execute the jgeneratePackage () macro.

To use a package the user should download package’s zip file into the packages’ folder (containing
the loadpackage.sas file). And, in the SAS session, the user should run the following code:

filename packages "<directory/containing/packages>";
%include packages(loadpackage.sas);
%loadPackage (packageName)

In two subsequent sections we introduce the concept of a SAS package from both user and devel-
oper’s point of view. What is worth to mention, and what is one of the biggest advantage of using SAS
packages, is that work to be done on the user’s side to use provided package is almost non.

The last section provides an example in which a package is created.

"The idea presented in this article should not be confused with other occurrences of "package” concept which could be
found in the SAS ecosystem, e.g. Proc DS2 packages, SAS/IML packages, or SAS Integration Technologies Publishing Framework
packages.

SAS PACKAGES - THE WAY TO SHARE (DRAFT 2019.10.18) 3

THE USER: HOW TO and THE RULES

User’s files and folders. Since the idea of a SAS package is to take off (from the user’s shoulders)
the burden of "necessity to know how it is all connected and dependent” there are only few simple steps
to be done on the user’s end. The user’s part of work required to use a package starts with setting up
some files and folders, but is very short and in practice only the last step is repeated more than once.
The work goes as follows:

e Create a folder for your packages, e.g. under Windows 0S family C:/SAS_PACKAGES or under
Linux/UNIX OS family /home/<username>/SAS_PACKAGES.

e Copy the loadpackage.sas file into packages’ folder.

e Copy zip file with the package into packages’ folder.

User’s session. When all files and folders are settled the user, to enjoy the package, runs a SAS
session and executes the following steps:

e For loading the package:
filename packages "<directory/containing/packages/>";
%include packages(loadpackage.sas);
%loadPackage (packageName)

e To get help information about the package printed in the log:

o for general information about the package run:
%helpPackage (packageName)

o for all available information about the package run:
JhelpPackage (packageName, *)

o for a particular element of the package, e.g. function or macro, run:
%helpPackage (packageName, entry)

where entry is a single word which is used for context search. "License” prints out license text.

e For removing (a.k.a. unloading) package’s content:
%unloadPackage (packageName)

After loading a package for the first time it is a good practice to read the log to find out more about
packages content and the list of loaded elements.

Caution! There is one important restriction regarding the SAS session! Words "package” and
"packages” are restricted as a file reference for the FILENAME statement and the FILENAME() func-
tion. These words are file references used internally by the %loadPackage(), %helpPackage(), and
%unloadPackage () macros. Using them may cause unexpected results and may jeopardise package
stability!

User’s "under the hood”. The above steps are all that are necessary to use and work with a pack-
age. There are also some additional things happening in the background. This section explains them
in more details.

e The %loadPackage () macro loads all components of the package as a primary job. Additionally the
package’s header is printed into the log. Whenever an element of the package is loaded appropriate
note is printed into the log. If there were any requirements provided they will be tested at this point.

e The %helpPackage () macro prints out into the log help information attached to the package’s con-
tent. When no second argument is provided only package’s description is printed out. When the
second argument is provided, if it is an asterisk ("*") all help’s content is printed out (for datasets
also proc contents is run), if it is a helpKeyword then content search is executed based on its value
and only selected parts of help’s content are printed out. If helpKeyword value is "License” then
package’s license is printed out.

e The %unloadPackage () macro cleans up the session. All objects created by package (except execs)
are deleted. If clean files were provided their content is executed too.

SAS PACKAGES - THE WAY TO SHARE (DRAFT 2019.10.18) 4

THE DEVELOPER: HOW TO and THE RULES

Developer’s files and folders. The developer’s part of work to build a package starts with prepar-

ing a set of files and folders. This part goes as follows:

e Create a folder for your package a.k.a. package’s folder (hint: name it the same name as your pack-

age’'s name).

e Create a descriptor file, named description.sas, and copy it into the package’s folder. The file is

mandatory, has simple structure, and it contains package’s metadata and (short) description (com-

pare [3]]). The structure of the description.sas file could be seen in the Figure[i]

Figure 1. Package descriptor structure.

/* This is the description file for the package. */

/* The collon (:) is a field separator and is restricted */

/* in lines of the header part. */

/* *xHEADER** */ @

Type: Package

Package: Xxxxxxx

Title: Xxx x XX XXX XX XXX

Version: x.x

Author: Fnamel Lnamel (xxx1@yyy.zz), Fname2 Lname2 (xxx20Qyyy.zz)
Maintainer: Fname3 Lname3 (xxx3Qyyy.zz)

License: XXX

Encoding: XXXX

Required: "Base SAS Software", "SAS/Xxx", "SAS/ACCESS Interface to

09060000

L)

<
<
<
<

/* *x*DESCRIPTION** */ @
/* All the text below will be used in help */
DESCRIPTION START:

XXXXXXXKXXXX XXX XXXXXX XXXXXX XXXXXXXX. XXXXX
XXXX XX XXXXXXX XX XXXXXXXXXXX XXX . XXXXX XXX
XXXX XX X. XXXXXXXXXXXXX XXXXXXX XX X.

DESCRIPTION END:

The meaning of entries (a.k.a. tags) inside the description.sas file content are the following (the

dark bullet marks an element which is mandatory):

(9)

(@)

(®)

(@)
(®)

(@)

(®)

marks the header’s start. Mind the structure of the tag, i.e. slash, asterisk, space, and double
asterisk (/* *x). Each of the following lines is a key:value pair and such pair must be a single
line of text. The colon (:) is a field separator and is restricted in lines of the header.

is a constant (i.e. "Package”), required, and not null value for the key type.

is a packages’s name. It is required, not null, up to 24 characters long, and shares naming
restrictions like those for a SAS dataset’s name.

is short title of a package (i.e. one phrase). It is required and not null.

is a package’s version, it is required and not null. (preferred form is: an integer value for a stable
version, a decimal value for non-stale one)

and (@) are comma separated lists of package’s author(s) and maintainer(s). Elements of lists
are of the form: "Firstname Lastname (email@address.com)”.

is a license under which the package is distributed. It is required, not null, possible values
could be: MIT, GPL2, BSD, PROPRIETARY, etc. The license text itself should be inserted into a
license.sas file (see the further steps).

SAS PACKAGES - THE WAY TO SHARE (DRAFT 2019.10.18) 5

(®) is the information under which SAS sessions encoding package’s files were created. It is required
and not null. Possible values could be: UTF8, WLATIN1, LATIN2, etc. and the values should satisfy
requirements for the encoding= option of the filename statement.

(®) is the last required part. It is the description portion of the package. It is a free text bounded
between the "DESCRIPTION START:” and the "DESCRIPTION END:” tags. It could be multi-line. It
should elaborate about the package and its components (e.g. macros, functions, datasets, etc.)

(®) is a quoted and comma separated list of licensed SAS products required for the SAS session
under which package will be used. Possible values inserted into the list should be the same as
these the proc setinit printsinthe log, e.g. "Base SAS Software", "SAS/IML", "SAS/ACCESS
Interface to Teradata". The "Required” tag is optional, when it is empty or not provided in
the description the testing code is not generated. Though, it is recommended to add this one.

Based on the header’s information, the following internal macrovariables are generated: packageName,

packageVersion, packageTitle, packageAuthor, packageMaintainer, packageEncoding,

packagelicense.
e Inside the package’s folder create subfolders for the code files. A subfolder’s name must be structured
as follows:

IS 1]

a) it contains only lower case letters, digits, and underscore(

" o

b) itis composed of two parts separated by and underscore (”_"), i.e.
o thefirst partis a series of digits (with leading zeros, e.g. 001, 002, ..., 123, 124, .. .); its purpose
is to keep execution’s sequence (e.g. in case the code must be ordered to run properly);
o the second part, called folder’s type, indicates subfolder’s content. The type must be one of
the following:
libname (for libraries assignments),
macro (for macros),
function (for proc fcmp functions),
format (for formats and informats),
data (for the code generating dataset),
exec (for so called "free code”) or
clean (for the code cleaning up the session after execs).
An example of a package’s subfolders structure could be found in the Figure[2] In case the order of
code’s execution is irrelevant the first part (i.e. digits and underscore) may be skipped.
In case when the order of code’s execution is important, e.g. format $efg. must be defined before
function abc (), two folders of type format and function with two different sequence of digits have to
be created in a way that digits maintain execution’s order, e.g. 017_format for the code of the format
$efg. and 042_function for the code of the function abc ().
The list of types may be extended in the future if need be.
e Copy the code’s files into package’s subfolders in accordance with types and the following set of rules:
o One-file-one-object, e.g. a code of one function must be one file. The only exception are for-
mats/informats, in this case one file may contains all four formats/informats sharing the same
name, e.g. numeric format abc., character format $abc., numeric informat abc., and character
informat $abc. all must be kept in one file.
o An object name is a file name, i.e. a definition of a macro named %abc () must be contained in a
file named abc.sas.
o The definition of a function must be enclosed in the following template of the FCMP procedure:

SAS PACKAGES - THE WAY TO SHARE (DRAFT 2019.10.18) 6

proc fcmp
inlib = work.&packageName.fcmp
outlib = work.&packageName.fcmp.package
<... other options ...>

<... function’s or subroutine’s body ...>
run;
quit;

The inlib= and outlib= options are, literally, set to: "work.&packageName.fcmp” and
"work.&packageName . fcmp.package”.

The definition of a format/informat must be enclosed in the following template of the FORMAT
procedure:

proc format
1ib = work.&packageName.format

<... other options ...>
5
<... numeric format’s definition ...>
<... character format’s definition ...>
<... numeric informat’s definition ...>
<... character informat’s definition ...>
run;

The 1ib= option is, literally, set to: "work.&packageName . format”.

exec folders are for so-called "free code”, i.e. if a package, to be ready and usable, requires some
additional code to be run (code not fitting provided types) - this code must be inserted into a file
inside one of the exec subfolder.

clean folders are for cleaning after execs, i.e. if a code from one of exec folders creates some
object (e.g. a catalog, a macro, or a dataset) the appropriate code inside a clean subfolder must
be developed to remove created object.

Parts of code files which are to be used to generate help information must be enclosed between
following text tags: ”/#*** HELP START *¥x*/” and”/#x* HELP END #x*x/” e.g. from the following
file containing: an example of a macro code, a help text, and other comments:

SAS PACKAGES - THE WAY TO SHARE (DRAFT 2019.10.18) 7

/**x HELP START *x*x/
/x >>> YABC() macro: <<<

*

* Main macro which allows to do

* this and that...

* Recomnended for SAS 9.4 and higher.
*%/
/*x* HELP END **x/

/* macro definition */
/***x HELP START **%/
%MACRO ABC(

paraml /* parameter 1 is used for ... */
,param2 /* parameter 2 is used for ... */
)
/**x HELP END *x*x*/
<... body of a macro ...>
<...
<... body of a macro ...>

YMEND ABC;

/*%x HELP START %/
/* EXAMPLE 1: use in datastep

data class;
set sashelp.class;
%ABC(age, weight)

run;

*x/
/***x HELP END *x*x*/

only the following parts of text will be extracted for help’s purpose:

/* >>> JABC() macro: <<<

*

* Main macro which allows to do

* this and that...

* Recomnended for SAS 9.4 and higher.
*

*%/
%MACRO ABC(
paraml /* parameter 1 is used for ... */
,param? /* parameter 2 is used for ... */
)

/* EXAMPLE 1: use in datastep

data class;
set sashelp.class;
%ABC (age, weight)

run;

*x/

e Create a license.sas file containing license information for the package. Place the file in the
package’s folder (together with the description.sas and subfolders). If no file is provided the

license.sas will be generated with standard MIT license (read "|Generating package in practice -|
a use-case|’ section to see the MIT license text).

SAS PACKAGES - THE WAY TO SHARE (DRAFT 2019.10.18) 8

e Create a folder for packages, e.g. under Windows OS family C:/SAS_PACKAGES or under Linux/UNIX
OS family /home/<username>/SAS_PACKAGES and copy the generatepackage.sas file into this folder.

Developer’s session. When all files and folders are settled the developer runs SAS session and
executes the following code:

filename packages "<directory/contsining/packages/>";

%include packages(generatepackage.sas);

/*ods html;x*/

%generatePackage (filesLocation=<directory/with/package’s/files/>)
When the %generatePackage macro ends its execution the packagename.zip file, containing all pack-
age’s content inside it, is created inside the "<directory/with/package’s/files/>".

Developer’s "under the hood”. Before reading this subsection further we recommend (for a better
view) to have subsections "User’s files and folders|’ and "User’s session|’ of the 'TTHE USER: HOW TO|
[and THE RULES! section read.

When the packagename.zip file is created, by the %generatePackge () macro, a lot of things is happen-

ing behind the scenes. This section explains them in more details.

The first information the developer receives after process ends is a summary report displaying basic
information about the package’s content. In this summary the following elements are displayed: the
package’s location (i.e. folder), developer’s &sysuserid., creation’s timestamp, SAS version, the pack-
age’s encoding information (based on the description.sas file), and current SAS session’s encoding.
From the description.sas file the package’s name, version, and license type are extracted and printed.
The last part of the summary is a table displaying a list of files used to build up the package.

Within the package’s zip file we will find:

e Copies of all files from package’s subfolders but with modified names, what is needed to keep the
ordering in place. Each code file’s name is extended with a prefix of a form: undescore, subfolder’s
name, and dot. For example if file name is abc.sas and subfolder’s name is 007_macro then the new
name is _007_macro.abc.sas.

e The description.sas file (the one described earlier) and the license.sas file.

e The packagemetadata.sas file containing definitions of internal macrovariables used by the
%loadPackage (), %helpPackage (), and %unloadPackage () macro.

e The load.sas file containing code executed by the %1loadPackage () macro. The file’s content is built
based on the subfolders and files’ structure provided by the developer. Thefile is a series of %includes,
with additional automatic note comments in %put statements, and, if need be, set of options modi-
fications e.g. inserts to fmtsearch option for formats/informats or appends to cmplib option for
functions. If files of type exec are inside the package a code printing out their content into the log is
also attached.

e The help.sas file containing code executed by the %helpPackage() macro. The file contains 1)
code which displays general package’s description, 2) code which search for a content based on
helpKeyword’s value and prints out the information, and 3) code which, if helpKeyword's value is
"License”, prints out the license text.

e The unload.sas file containing code executed by the %unloadPackage() macro. The file’'s content
is built based on the subfolders and files structure provided by the developer. Code inside the file
removes macros, functions, formats, datasets and libraries created during loading process. It restores
fmtsearch and cmplib options. If clean type subfolder is provided files from within the folder are
%included (they are executed as the first).

SAS PACKAGES - THE WAY TO SHARE (DRAFT 2019.10.18)

Figure 2. Example of a package’s subfolders structure.

<packageName>
|
+-000_libname [one file one libname]
| |
| +-abc.sas [a file with a code creating libname ABC]
|
+-001_macro [one file one macro]
| |
| +-hij.sas [a file with a code creating macro HIJ]
| |
| +-klm.sas [a file with a code creating macro KLM]
|
+-002_function [one file one function,
| | option OUTLIB= should be: work.&packageName.fcmp.package
| | option INLIB= should be: work.&packageName.fcmp
| | (both literally with macrovariable name and "fcmp" sufix)]
| |
| +-efg.sas [a file with a code creating function EFG]
|
+-003_format [one file one format,
| | option LIB= should be: work.&packageName.format
| | (literally with macrovariable name and "format" sufix)]
| |
| +-efg.sas [a file with a code creating format EFG and informat EFG]
|
+-004_data [one file one dataset]
| |
| +-abc.efg.sas [a file with a code creating dataset EFG in library ABC]
|
+-005_exec [so called "free code", content of the files will be printed
| | to the log before execution]
| |
| +-<no file, in this case folder may be skipped>
|
+-006_format [if your codes depend eachother you can order them in folders,
| | e.g. code from 003_... will be executed before 006_...]
| |
| +-abc.sas [a file with a code creating format ABC,
| using the definition of the format EFG]
+-007_function
| |
| +-<no file, in this case folder may be skipped>
|
+-<sequential number>_<type [in lower case]>
|

+=. ..

+-00n_clean [if you need to clean something up after exec file execution,

| content of the files will be printed to the log before execution]

+-<no file, in this case folder may be skipped>

SAS PACKAGES - THE WAY TO SHARE (DRAFT 2019.10.18) 10

Generating package in practice - a use-case

The practical example will be build based on one of author’s favorite SAS article, namely Mike Rhoads’
"Use the Full Power of SAS in Your Function-Style Macros” [2], which introduces the macro-function-
sandwich programming approach. The idea is to allow user to execute SQL's "select” code within a
datastep, e.g.

data class_subset;
set %SQL(select
name
, sex
, height
from
sashelp.class
where
age > 12
)
(rename=(height=heightInch));

heightCm = 2.54 * heightInch;

run;

Thus the package’s name will be SQLinDS and it will be providing the %SQL() macro which allow users
to write queries like the one above. Internally the %SQL () macro uses a user defined function, another
macro, and stores intermediate data (views) inside a predefined library (pointing to a subdirectory of
the work). Package will be build with 5 files: description.sas, two macros, one function, and one
library. Let’s assume we created the following package’s folder C: /SAS_PACKAGES/SQLinDS/ and we
copied generatepackage.sas file into the C:/SAS_PACKAGES/ directory. The structure of subfolders
created for the package is presented in the Figure[3]

Figure 3. SQLinDS package - subfolders’ structure.

<C:/SAS_PACKAGES/SQLinDS/>

|

+-description.sas ©

|

+-000_libname

| |
+-dssql.sas @

001_macro
|

+-dssql_inner.sas ©

|
+-sql.sas @

002_function
|

|

|
+_
|

|

|

|

|
+_
|

| +-dssql.sas O
|

+_

license.sas @

The content of files composing the package is following:

SAS PACKAGES - THE WAY TO SHARE (DRAFT 2019.10.18)

/* This is the description file for the package. x/
/* The collon (:) is a field separator and is restricted */
/* in lines of the header part. x/

/* *xHEADER** x*/

Type: Package

Package: SQLinDS

Title: SQL queries in Data Step

Version: 1.0

Author: Mike Rhoads (RhoadsMl@Westat.com)
Maintainer: Bartosz Jablonski (yabwon@gmail.com)
License: MIT

Encoding: UTF8

/* **xDESCRIPTION#** */
/* All the text below will be used in help */
DESCRIPTION START:

The SQLinDS package is an implementation of

the macro-function-sandwich concept introduced in:

"Use the Full Power of SAS in Your Function-Style Macros"
the article by Mike Rhoads, Westat, Rockville, MD

Copy of the article can be found at:
https://support.sas.com/resources/papers/proceedings12/004-2012. pdf

SQLinDS package provides following components:

1) %dsSQL_inner () macro

2) dsSQL() function

3) %SQL(O) macro
Library DSSQL is created in a subdirectory of the WORK library.

DESCRIPTION END:

11

SAS PACKAGES - THE WAY TO SHARE (DRAFT 2019.10.18)

(2]

/***x HELP START **x/

/

*

>>> dsSQL library: <<<

The dsSQL library stores temporary views
generated during %SQL() macro’s execution.

E I 3

If possible, created as a subdirectory of WORK:

options dlCreateDir;
LIBNAME dsSQL BASE "Ysysfunc(pathname (WORK))/dsSQLtmp";

* if not then redirected to WORK
LIBNAME dsSQL BASE "Ysysfunc(pathname (WORK))";
*x/
/***x HELP END **x*/
data WORK._%sysfunc(datetime(), hex16.)_;
length option $ 64;
option = getoption("dlCreateDir");

run;

options dlCreateDir;

data _null_;
set _LAST_;
rcl = LIBNAME("dsSQL", "Y%sysfunc(pathname (work))/dsSQLtmp", "BASE");

rc2 = LIBREF("dsSQL");
if rc2 NE O then

rcl = LIBNAME("dsSQL", "Ysysfunc(pathname(work))", "BASE");
call execute ("options " || strip(option) || ";");

run;

proc delete data = _last_;

run;

libname dsSQL LIST;

(3]

SAS PACKAGES - THE WAY TO SHARE (DRAFT 2019.10.18)

/*x% HELP START *x*x/
/* >>> %dsSQL_Inner() macro: <<<
Internal macro called by dsSQL() function.

*
*

*

* Recomnended for SAS 9.3 and higher.

* Based on paper:

* "Use the Full Power of SAS in Your Function-Style Macros"

* by Mike Rhoads, Westat, Rockville, MD

* https://support.sas.com/resources/papers/proceedings12/004-2012.pdf
*

*x /
/*x* HELP END **%*/

/* inner macro */
%MACRO dsSQL_Inner() / SECURE;
%local query;
%let query = Y%superq(query_arg);
%let query = Ysysfunc(dequote (&query));

%let viewname = dsSQL.dsSQLtmpview&UNIQUE_INDEX_2.;
proc sql;
create view &viewname as
&query
quit;
%MEND dsSQL_Inner;

(4]

SAS PACKAGES - THE WAY TO SHARE (DRAFT 2019.10.18) 14

/***x HELP START **x/

/

*

>>> dsSQL() function: <<<
*

* Internal function called by %SQL() macro.

*

* Recomnended for SAS 9.3 and higher.

* Based on paper:

* "Use the Full Power of SAS in Your Function-Style Macros"

* by Mike Rhoads, Westat, Rockville, MD

* https://support.sas.com/resources/papers/proceedings12/004-2012.pdf
*

*x /

/*** HELP END **x*/

proc fcmp
inlib = work.&packageName.fcmp
outlib = work.&packageName.fcmp.package

function dsSQL(unique_index_2, query $) $ 41;
length
query query_arg $ 32000 /* max querry length */
viewname $ 41
query_arg = dequote(query) ;
rc = run_macro(’dsSQL_Inner’ /* <-- inner macro */
,unique_index_2
,query_arg
,Viewname
)3
if rc = 0 then return(trim(viewname)) ;
else
do;
put ’ERROR: [function dsSQL] A problem with the dsSQL() function’;
return(" ");
end;
endsub;
run;
quit;

(5]

SAS PACKAGES - THE WAY TO SHARE (DRAFT 2019.10.18) 15

/%

/

*

*OK K X K X X X ¥ ¥

X%

/%

/%

*% HELP START **x/
>>> %SQL() macro: <<<

Main macro which allows to use

SQL’s queries in the data step.

Recomnended for SAS 9.3 and higher.

Based on paper:

"Use the Full Power of SAS in Your Function-Style Macros"

by Mike Rhoads, Westat, Rockville, MD
https://support.sas.com/resources/papers/proceedings12/004-2012. pdf

EXAMPLE 1: simple sql querry
data class_subset;
set %SQL(select name, sex, height from sashelp.class where age > 12);
run;
EXAMPLE 2: with dataset options
data renamed;
set %SQL(select * from sashelp.class where sex = "F")(rename = (age=age2));
run;
EXAMPLE 3: dictionaries in datastep
data dictionary;
set %SQL(select * from dictionary.macros);

run;

/

% HELP END %%/

outer macro */

%MACRO SQL() / PARMBUFF SECURE;

%let SYSPBUFF = Y%superq(SYSPBUFF); /* macroquoting */

%let SYSPBUFF = Y%substr (&SYSPBUFF, 2, %LENGTH(&SYSPBUFF) - 2); /* remove brackets */

%let SYSPBUFF = Y%superq(SYSPBUFF); /* macroquoting */

%let SYSPBUFF = Y%sysfunc(quote(&SYSPBUFF)); /* quotes */

%put NOTE-#**the querry#**; /* print out the querry in the log */
%put NOTE-&SYSPBUFF.;

%hput NOTE—skskkokskkokskokokkokokkokok ;

%local UNIQUE_INDEX; /* internal variable, a unique index for views */
%let UNIQUE_INDEX = &SYSINDEX;
%sysfunc(dsSQL (&UNIQUE_INDEX, &SYSPBUFF)) /* <-- call dsSQL() function,

see the WORK.SQLinDSfcmp dataset */

%MEND SQL;

SAS PACKAGES - THE WAY TO SHARE (DRAFT 2019.10.18) 16

® MIT license text (used by default, mind macrocode in the first line):

Copyright (c) %sysfunc(today(),year4.) &packageAuthor.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

When all files are placed inside proper subfolders we start a new SAS session and we execute the

following code:

filename packages "C:/SAS_PACKAGES/";

%include packages(generatepackage.sas);

/*ods html;*/

%generatePackge (filesLocation=C:/SAS_PACKAGES/SQLinDS/)
As a result, extra the summary report, we receive (inside the C:/SAS_PACKAGES/SQLinDS/ folder) the
sqlinds.zip file. Our package is prepared. And ready for sharing!

THE CODE

If you are interested in testing approaches presented above yourself and want to play a bit with the code
and data you can download SAS codes which were the motivation for this paper under the following
"world wild web” address:

http://www.mini.pw.edu.pl/~bjablons/SASpublic/SAS_PACKAGES

or from authors GitHub:
https://github.com/yabwon/SAS_PACKAGES

REFERENCES

[1] Art Carpenter, "Carpenter’s Guide to Innovative SAS Techniques”, SAS Press
[2] Mike Rhoads, "Use the Full Power of SAS in Your Function-Style Macros”,
SAS Global Forum 2012 Proceedings, https://support.sas.com/resources/papers/proceedings12/004-2012.pdf
[3] Hadley Wickham, "R Packages: Organize, Test, Document, and Share Your Code”,
O’Reilly Media 2015, http://r-pkgs.had.co.nz/description.html
[4] https://realpython.com/python-modules-packages/ as of October 2019
[5] https://www.internetblog.org.uk/post/1520/what-is-a-linux-package/ as of October 2019

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at one of the following
e-mail address:

yabwon M gmail . com

bartoszl.jablonskifciti.com

or via the following LinkedIn profile:

www.linkedin.com/in/yabwon

SAS PACKAGES - THE WAY TO SHARE (DRAFT 2019.10.18) 17

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trade-
marks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

	ABSTRACT
	INTRODUCTION and CONTEXT
	WHAT IS a SAS PACKAGE?
	THE USER: HOW TO and THE RULES
	User's files and folders.
	User's session.
	User's "under the hood"

	THE DEVELOPER: HOW TO and THE RULES
	Developer's files and folders.
	Developer's session.
	Developer's "under the hood"

	Generating package in practice - a use-case
	THE CODE
	REFERENCES
	CONTACT INFORMATION
	—

