
Getting Started Withsas® Packages
(how to use them - in seven steps + appendix)

Bartosz Jabłoński
Q yabwonA��� gmail . com

November 1st , 2020

intro

This presentation shows, in few simple steps,
how to:
� start working with SAS Packages Framework
� and using SAS Packages.

Shall we?

„The wolf is sated and the sheep is whole”

saspackagesthe way to share

by Bartosz Jabłoński

O RLY?

package

SAS package1

A SAS package is an automatically generated, single, stand alone zip file
containing organised and ordered code structures, created by the developer and
extended with additional automatically generated ”driving” files (i.e. description,
metadata, load, unload, and help files).
The purpose of a package is to be a simple, and easy to access, code sharing
medium, which will allow: on the one hand, to separate the complex code
dependencies created by the developer from the user experience with the final
product and, on the other hand, reduce developer’s and user’s unnecessary
frustration related to a remote deployment process.

SAS Packages Framework
The SAS Packages Framework (SPF) is a set of macros which allow to use and
to develop SAS packages.

1The idea presented here should not be confused with other occurrences of ”package” concept which could be found in the SAS ecosystem, e.g.
Proc DS2 packages, SAS/IML packages, SAS ODS packages, SAS Integration Technologies Publishing Framework packages, or a *.egp file.

step 1

files and folders
Both the SAS Packages Framework (SPF) file and all packages we want to use
have to be stored in the same folder.
The first step is to create such a directory on your computer, e.g.
� under Windows OS family it could be C:/SAS_PACKAGES or
� under Linux/UNIX OS family it could be /home/<username>/SAS_PACKAGES.

For our convenience lets assume that the C:/PCKG is the one we created.

step 2

download the framework
The SAS Packages Framework is available under the following address:

https://github.com/yabwon/SAS_PACKAGES
Under the SAS_PACKAGES repository the SPF folder contains the framework.
Download the SPFinit.sas file into the C:/PCKG directory.

á

step 3

install the package
SAS packages are available under the following address:
https://github.com/yabwon/SAS_PACKAGES

Under the SAS_PACKAGES repository the packages folder contains packages.
Download the zip file with the package of choice into the C:/PCKG directory.

á

step 4

enable the framework
To enable the SAS Packages Framework we run the following code:

filename packages "C:/PCKG";

%include packages(SPFinit.sas);

The first line assigns the packages fileref to the C:/PCKG directory.
The second includes content of the SPFinit.sas file (i.e. the framework
content) into the SAS session.

Since the framework’s macros rely on the packages fileref we have toremember to keep it assigned through entire SAS session.

Hint. If we paste the above two lines of code into the autoexec.sas file the
framework will be automatically available from the beginning of the session.

step 5

load the package
Lets assume that the SAS Package we installed (i.e. downloaded into the
C:/PCKG directory) was the baseplus.zip.

To load the package into SAS session we run the following code:

%loadPackage(BasePlus)

This line of code loads package content (e.g. macros, functions, data sets,
formats, etc.) into the SAS session and prints out in the SAS log a short
information about the loading process and the package.

step 6

help about the package
Lets assume that the SAS Package we installed (i.e. downloaded into the
C:/PCKG directory) was the baseplus.zip.

To get help about the package printed in the SAS log we run the following code:

%helpPackage(BasePlus)

This line of code prints out in the SAS log the help information about the
package and its elements.
To learn about the package license we run: %helpPackage(BasePlus, License).
To learn about particular element of the package, e.g. a function named
arrFill(), we run: %helpPackage(BasePlus, arrFill).
To learn about all available components of the package we run:
%helpPackage(BasePlus, *).

step 7

unload the package
Lets assume that the SAS Package we installed (i.e. downloaded into the
C:/PCKG directory) was the baseplus.zip.

To unload the package from SAS session we run the following code:

%unloadPackage(BasePlus)

This line of code removes all package content (e.g. macros, functions, data sets,
formats, etc.) from the SAS session and prints out in the SAS log a short
information about unloaded elements.

summary

in ”short” words, an example
� Create the C:/PCKG directory,
� Go to the https://github.com/yabwon/SAS_PACKAGES
� Download the framework file SPFinit.sas and the package of choice (e.g

BasePlus) into the C:/PCKG directory.
� Run the following code:
filename packages "C:/PCKG"; /* set the directory */
%include packages(SPFinit.sas); /* enable the framework */
%loadPackage(BasePlus) /* load the package content */
%helpPackage(BasePlus) /* get help for the package */
%unloadPackage(BasePlus) /* unload the package */

the end

appendix
If you would like to learn more about
using packages see upcoming pages.

appendix 0

documentation
The documentation for the SAS Packages Framework is located under the following
address:
https://github.com/yabwon/SAS_PACKAGES/tree/master/SPF/Documentation

The current version is in the file:
SAS(r) packages - the way to share (a how to)- Paper 4725-2020 - extended.pdf

appendix 1

how SPF interacts with SAS session
Since the framework’s macros rely on the packages fileref we have to
remember to keep it assigned and unchanged through entire SAS session.

When we enable the framework the following macros are generated:
%installPackage(), %loadPackage(), %loadPackageS(), %helpPackage(),
%unloadPackage(), %verifyPackage(), %listPackages(), and
%generatePackage().

When we load the first package, e.g. run the %loadPackage(somePackage)
macro for the first time, the SYSLoadedPackages macrovariable is created and
populated. It stores the list of loaded packages in the current SAS session.

appendix 2

help for SPF macros
When we run the framework macros without arguments or with HELP
keyword, like:
%installPackage(),
%loadPackage(HELP),
%helpPackage(),
%unloadPackage(HELP),
or
%generatePackage()
the help information (for five listed macros) is printed out into the SAS log.
Since the %listPackages() has no arguments we run
%listPackages(HELP)
to see the help for the macro.

appendix 3

lazy data
Sometimes the developer may provide packages for which data are not
automatically loaded into the SAS session, they are so-called lazydata.
When we want to load such data the following code has to be executed:
� to see lazy data available we run: %helpPackage(myPackage) and read

information in the SAS log,
� to load lazy data we copy the data set name and run:
%loadPackage(myPackage, lazydata=nameOfTheDatasetToBeLoaded)

We can provide a space separated list of datasets to load (e.g. lazydata=A B C)
or if we want to load all lazy data we can use an asterisk (i.e. lazydata=*)
When a regular data set provided with the package has to be reloaded (e.g. it
was corrupted) the lazydata= may be used for that purpose.

appendix 4

alternative to steps 2 & 4
If the SAS session allows us to use URL file reference we can enable the SAS Packages Framework
with the following code:
filename packages "C:/PCKG";

filename SPFinit URL
"https://raw.githubusercontent.com/yabwon/SAS_PACKAGES/master/SPF/SPFinit.sas";

%include SPFinit;

But we have to remember that the code above does not create a copy of the SPFinit.sas file in
the C:/PCKG directory. It only enables the framework for the current session.

To have the SPFinit.sas file downloaded into the packages folder (for future use even without the
internet access) run:
%installPackage(SPFinit)

appendix 5

alternative to step 3
If the SAS session allows us to use URL file reference we can , after enabling the SAS Packages
Framework, download packages with use of the following code:
%installPackage(BasePlus)

During the installation a copy of the baseplus.zip file is created in the C:/PCKG directory so it
allows us to use the package in future (even if we don’t have access to the network).

The installPackage macro allows multiple packages to be installed at one run, space separated list
should be provided, e.g. %installPackage(somePackage1 somePackage2).

appendix 6

in ”short” words, an example no. two
� Create the C:/PCKG directory,
� Go to the https://github.com/yabwon/SAS_PACKAGES
� Download the framework file SPFinit.sas into the C:/PCKG directory.
� Run the following code:
filename packages "C:/PCKG"; /* set the directory */

%include packages(SPFinit.sas); /* enable the framework */

%installPackage(BasePlus) /* download the package zip from the github */
%loadPackage(BasePlus) /* load the package content */
%helpPackage(BasePlus) /* get help for the package */
%unloadPackage(BasePlus) /* unload the package */

appendix 7

in ”short” words, an example no. three
Run the following code:
filename packages "%sysfunc(pathname(WORK))"; /* set the directory */

filename SPFinit URL
"https://raw.githubusercontent.com/yabwon/SAS_PACKAGES/master/SPF/SPFinit.sas";
%include SPFinit; /* enable the framework */

%installPackage(BasePlus) /* download the package zip from the github */
%loadPackage(BasePlus) /* load the package content */
%helpPackage(BasePlus) /* get help for the package */
%unloadPackage(BasePlus) /* unload the package */

appendix 8

loading multiple packages with one macro
It is possible to load multiple packages with one run. The %loadPackageS()
macro (mind the S at the end!) is a wrapper for the %loadPackage() macro.
A comma separated list of packages is required. The version of the package
may be added in brackets. It works only with the zipped packages with default
options.
Example of loading multiple packages:
%loadPackageS(somePackage1(1.7),somePackage2,somePackage3(4.2))

appendix 9

verify package content
For SAS 9.4M6 and later it is possible to verify if a package content is genuine,
i.e. not altered by third parties, with the %verifyPackageS() macro.
The Developer provides the User with hash digest of the zip file which is
required to verify the package.
Example of verifying package:
%verifyPackageS(myPackage,

hash=VBKSH93VB39RBKJBVC0LBVJBU21RASDL80BBK221HMBIOP)

appendix 10

more about searching help for a package
If a package contains a macro, an IML module, a format/informat, or a function
which are sharing the same name , e.g. abc, then the following help search:
%helpPackage(packageName, abc) will print out help info for all of them.
But if we want to learn only about particular one we can do it writing the help
search in the following way:
� for the function or the IML module: %helpPackage(packageName, abc()),
� for the macro: %helpPackage(packageName, ’%abc()’), with single quotes to

prevent resolving macro name,
� for the format/informat: %helpPackage(packageName, $abc.), regardless it is

a numeric or a character format/informat.

use packages!

	Intro
	Package
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Summary
	theend
	appendix
	Appendix 0
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5
	Appendix 6
	Appendix 7
	Appendix 8
	Appendix 9
	Appendix 10
	usepackages

