The BasePlus package [ver. 1.24.2] Updates: - the `%RainCloudPlot()` has 2 new parameters: `catLabelAttrs` and `xLabelAttrs`, - documentation was updated (new examples with plots), and - some spellings were fixed. The SHA256 hash digest for package BasePlus: `F*2A4F3953EC56DB914024457F74286D565C23DCF220FF151040BDB704FD8DDB06`
155 KiB
The BasePlus package [ver. 1.24.2]
The BasePlus package implements useful functions and functionalities I miss in the BASE SAS.
It is inspired by various people, e.g.
- at the SAS-L discussion list
- at the communities.sas.com (SASware Ballot Ideas)
- at the Office...
- etc.
Kudos to all who inspired me to generate this package: Mark Keintz, Paul Dorfman, Richard DeVenezia, Christian Graffeuille, Allan Bowe, Anamaria Calai, Michal Ludwicki, Quentin McMullen, Kurt Bremser.
Recording from the SAS Explore 2022 conference: A BasePlus Package for SAS (September 27th-29th, 2022).
BASIC EXAMPLES AND USECASES:
Example 1: One-dimensional array functions. Array parameters to subroutine calls must be 1-based.
data _null_;
array X[4] _temporary_ (. 1 . 2);
call arrMissToRight(X);
do i = 1 to 4;
put X[i]= @;
end;
put;
call arrFillMiss(17, X);
do i = 1 to 4;
put X[i]= @;
end;
put;
call arrFill(42, X);
do i = 1 to 4;
put X[i]= @;
end;
run;
Example 2: Delete dataset by name.
data toDrop;
x = 17;
run;
data _null_;
p = delDataset("toDrop");
put p=;
run;
Example 3: Strings concatenation with format.
data test;
x = 1 ; y = . ; z = 3 ;
t = "t"; u = " "; v = "v";
array a[*] x y z;
array b[*] t u v;
length s1 s2 s3 s4 $ 17;
s1 = catXFn("z5.", "#", A);
s2 = catXFi("z5.", "#", A);
s3 = catXFc("upcase.", "*", B);
s4 = catXFj("upcase.", "*", B);
put (_all_) (=);
run;
Example 4: Useful formats.
data _null_;
input x @@;
put @1 x= @11 x= bool. @21 x= int. @31 x= ceil. @41 x= floor.;
cards;
. ._ .A -10 -3.14 0 3.14 10
;
run;
Example 5: Getting variables names from datasets.
%put *%getVars(sashelp.class
,pattern = ght$
,sep = +
,varRange = _numeric_)*;
Example 6: Quick sort as an alternative to call sortn()
data _null_;
array test[25000000] _temporary_ ;
t = time();
call streaminit(123);
do _N_ = 25000000 to 1 by -1;
test[_N_] = rand("uniform");
end;
t = time() - t;
put "Array population time: " t;
t = time();
call quickSortLight (test);
t = time()-t;
put "Sorting time: " / t=;
run;
Example 7: De-duplicate values from a space separated list.
%let list = 4 5 6 1 2 3 1 2 3 4 5 6;
%put *%dedupListS(&list.)*;
Example 8: Zip elements of two space separated list.
%let x = %zipEvalf(1 2 3 4 5 6, 2018 2019 2020, argMd=5, function=MDY, format=date11.);
%put &=x;
Example 9: Simple Rain Cloud plot.
%rainCloudPlot(sashelp.cars,DriveTrain,Invoice)
Example 10: Zip SAS library.
%zipLibrary(sashelp, libOut=work)
%unzipLibrary(%sysfunc(pathname(work)), zip=sashelp, mode=S, clean=1)
Example 11: Long dataset names.
data %LDSN( work. peanut butter & jelly time with a "Hot-Dog" in [a box], popcorn, and s*t*a*r*s (drop = sex rename=(name=first_name) where = (age in (12,13,14))) );
set sashelp.class;
run;
proc print data = %LDSN( work. peanut butter & jelly with a "Hot-Dog" in [a box], popcorn, and s*t*a*r*s );
run;
data MyNextDataset;
set %LDSN( work. peanut butter & jelly with a "Hot-Dog" in [a box], popcorn, and s*t*a*r*s );
where age > 12;
run;
Example 12: List, to the log, content of home directory.
%bpPIPE(ls -la ~/)
EXAMPLE 13 Get list of all files and directories from C:\SAS_WORK\:
%dirsAndFiles(C:\SAS_WORK\,ODS=work.result)
EXAMPLE 14 Text repetition:
%put %repeatTxt(#,15,s=$) HELLO SAS! %repeatTxt(#,15,s=$);
EXAMPLE 15 Integer list:
%put %intsList(42);
EXAMPLE 16 Split dataset into blocks of 5 observations:
%splitDSIntoBlocks(5, sashelp.class, classBlock)
EXAMPLE 17 Split dataset into 7 parts:
%splitDSIntoParts(7, sashelp.cars, carsPart)
EXAMPLE 18 Return path to temporary file:
filename f temp;
%put %filePath(f);
Package contains:
- macro bppipe
- macro deduplistc
- macro deduplistp
- macro deduplists
- macro deduplistx
- macro dirsandfiles
- macro functionexists
- macro getvars
- macro intslist
- macro ldsn
- macro ldsnm
- macro lvarnm
- macro lvarnmlab
- macro qdeduplistx
- macro qgetvars
- macro qzipevalf
- macro raincloudplot
- macro repeattxt
- macro splitdsintoblocks
- macro splitdsintoparts
- macro symdelglobal
- macro unziplibrary
- macro zipevalf
- macro ziplibrary
- format bool
- format boolz
- format ceil
- format floor
- format int
- function arrfill
- function arrfillc
- function arrmissfill
- function arrmissfillc
- function arrmisstoleft
- function arrmisstoleftc
- function arrmisstoright
- function arrmisstorightc
- function bracketsc
- function bracketsn
- function catxfc
- function catxfi
- function catxfj
- function catxfn
- function deldataset
- function semicolonc
- function semicolonn
- format brackets
- format semicolon
- proto qsortincbyprocproto
- function frommissingtonumberbs
- function fromnumbertomissing
- function quicksort4notmiss
- function quicksorthash
- function quicksorthashsddv
- function quicksortlight
- macro filepath
- macro letters
- macro libpath
- macro translate
- macro tranwrd
- macro workpath
Package contains additional content, run: %loadPackageAddCnt(BasePlus) to load it or look for the baseplus_AdditionalContent directory in the Packages fileref localization (only if additional content was deployed during the installation process).
- SAS package generated by generatePackage, version 20230520 *
The SHA256 hash digest for package BasePlus:
F*2A4F3953EC56DB914024457F74286D565C23DCF220FF151040BDB704FD8DDB06
Content description
>>> %getVars() macro: <<<
The getVars() and QgetVars() macro functions allow to extract variables names form a dataset according to a given pattern into a list.
The getVars() returns unquoted value [by %unquote()]. The QgetVars() returns quoted value [by %superq()].
See examples below for the details.
The %getVars() macro executes like a pure macro code.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%getVars(
ds
<,sep=>
<,pattern=>
<,varRange=>
<,quote=>
<,mcArray=>
)
Arguments description:
ds- Required, the name of the dataset from which variables are to be taken.
-
sep = %str( )- Optional, default value%str( ), a variables separator on the created list. -
pattern = .*- Optional, default value.*(i.e. any text), a variable name regexp pattern, case INSENSITIVE! -
varRange = _all_- Optional, default value_all_, a named range list of variables. -
quote =- Optional, default value is blank, a quotation symbol to be used around values. -
mcArray=- Optional, default value is blank. 1) When null - the macro behaves like a macro function and returns a text string with variables list. 2) When not null - behaviour of the macro is altered. In such case a macro array of selected variables, named withmcArrayvalue as a prefix, is created. Furthermore a macro named asmcArrayvalue is generated. (see the macroArray package for the details). WhenmcArray=parameter is active thegetVarsmacro cannot be called within the%putstatement. Execution like:%put %getVars(..., mcArray=XXX);will result with
an Explicit & Radical Refuse Of Run (aka ERROR).
EXAMPLES AND USECASES:
EXAMPLE 1. A list of all variables from the sashelp.class dataset:
%put *%getVars(sashelp.class)*;
EXAMPLE 2. A list of all variables from the sashelp.class dataset separated by backslash:
%let x = %getVars(sashelp.class, sep=\);
%put &=x;
EXAMPLE 3. Use of regular expressions: a) A list of variables which name contains "i" or "a"
%put *%getVars(sashelp.class, pattern=i|a)*;
b) A list of variables which name starts with "w"
%put *%getVars(sashelp.class, pattern=^w)*;
c) A list of variables which name ends with "ght"
%put *%getVars(sashelp.class, pattern=ght$)*;
EXAMPLE 4. A list of numeric variables which name starts with "w" or "h" or ends with "x"
%put *%getVars(sashelp.class, sep=+, pattern=^(w|h)|x$, varRange=_numeric_)*;
EXAMPLE 5.
data test;
array x[30];
array y[30] $ ;
array z[30];
run;
a) A list of variables separated by a comma:
%put *%getVars(test, sep=%str(,))*;
b) A list of variables separated by a comma with suffix 5 or 7:
%put *%getVars(test, sep=%str(,), pattern=(5|7)$)*;
c) A list of variables separated by a comma with suffix 5 or 7 from a given variables range:
%put *%getVars(test, sep=%str(,), varRange=x10-numeric-z22 y6-y26, pattern=(5|7)$)*;
EXAMPLE 6. Case of quotes and special characters when the quote= parameter is not used:
a) one single or double qiote:
%put *%bquote(%getVars(sashelp.class, sep=%str(%")))*;
%put *%bquote(%getVars(sashelp.class, sep=%str(%')))*;
b) two single or double qiotes:
%put *"%bquote(%getVars(sashelp.class,sep=""))"*;
%put *%str(%')%bquote(%getVars(sashelp.class,sep=''))%str(%')*;
c) coma separated double quote list:
%put *"%getVars(sashelp.class,sep=%str(", "))"*;
d) coma separated single quote list:
%put *%str(%')%getVars(sashelp.class,sep=', ')%str(%')*;
%let x = %str(%')%getVars(sashelp.class,sep=', ')%str(%');
%put *%str(%')%QgetVars(sashelp.class,sep=', ')%str(%')*;
%let y = %str(%')%QgetVars(sashelp.class,sep=', ')%str(%');
%let z = %unquote(&y.);
e) ampersand (&) as a separator [compare behaviour]:
%put *%getVars(sashelp.class,sep=&)*;
%let x = %getVars(sashelp.class,sep=&);
%put *%getVars(sashelp.class,sep=%str( & ))*;
%let x = %getVars(sashelp.class,sep=%str( & ));
%put *%QgetVars(sashelp.class,sep=&)*;
%let y = %QgetVars(sashelp.class,sep=&);
%let z = %unquote(&y.);
%put *%QgetVars(sashelp.class,sep=%str( & ))*;
%let y = %QgetVars(sashelp.class,sep=%str( & ));
%let z = %unquote(&y.);
%put *%getVars(sashelp.class,sep=&)*;
%let x = %getVars(sashelp.class,sep=&);
%put *%getVars(sashelp.class,sep=%str( & ))*;
%let x = %getVars(sashelp.class,sep=%str( & ));
f) percent (%) as a separator [compare behaviour]:
%put *%QgetVars(sashelp.class,sep=%)*;
%let y = %QgetVars(sashelp.class,sep=%);
%let z = %unquote(&y.);
%put *%QgetVars(sashelp.class,sep=%str( % ))*;
%let y = %QgetVars(sashelp.class,sep=%str( % ));
%let z = %unquote(&y.);
EXAMPLE 7. Case of quotes and special characters when the quote= parameter is used:
a) one single or double qiote:
%put *%getVars(sashelp.class, quote=%str(%"))*;
%put *%getVars(sashelp.class, quote=%str(%'))*;
b) two single or double quotes:
%* this gives an error: ;
%* %put *%getVars(sashelp.class,quote="")*;
%* %put *%getVars(sashelp.class,quote='')*;
%* this does not give an error: ;
%put *%QgetVars(sashelp.class,quote="")*;
%put *%QgetVars(sashelp.class,quote='')*;
c) coma separated double quote list:
%put *%getVars(sashelp.class,sep=%str(,),quote=%str(%"))*;
d) coma separated single quote list:
%let x = %getVars(sashelp.class,sep=%str(,),quote=%str(%'));
%put &=x.;
EXAMPLE 8. Variables that start with A and do not end with GHT:
data class;
set sashelp.class;
Aeight = height;
run;
%put *%getVars(class, pattern = ^A(.*)(?<!ght)$, quote=%str(%"))*;
EXAMPLE 9. Variables that do not start with N and do not end with GHT:
data class;
set sashelp.class;
Aeight = height;
Neight = height;
run;
%put *%getVars(class, pattern = ^(?!N.*)(.*)(?<!ght)$, quote=%str(%"))*;
EXAMPLE 10. Composition with itself:
data class;
set sashelp.class;
Age_C = put(Age, best32.);
Height_C = put(Height, best32.);
Weight_C = put(Weight, best32.);
run;
%put #%getVars(class, varRange=_numeric_, sep=%str(: ))# <- no : at the end!!;
%put #%getVars(class, varRange=%getVars(class, varRange=_numeric_, sep=%str(: )):, sep=\)#;
EXAMPLE 11. Create a macro array XYZ... of variables names and an additional
macro %XYZ() which allows easy access to the list. Can be used with
the %do_over() macro (provided with the macroArray package).
data test;
array x[30];
array y[30] $ ;
array z[30];
run;
%getVars(test
,mcArray=XYZ
,varRange=x10-numeric-z22 y6-y26
,pattern=(5|7)$
,quote=#)
%put _user_;
%put *%XYZ(1)**%XYZ(2)*%XYZ(3)*;
%* Load the macroArray package first. ;
%put %do_over(XYZ);
>>> %QgetVars() macro: <<<
The getVars() and QgetVars() macro functions allow to extract variables names form a dataset according to a given pattern into a list.
The getVars() returns unquoted value [by %unquote()]. The QgetVars() returns quoted value [by %superq()].
The %QgetVars() macro executes like a pure macro code.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%QgetVars(
ds
<,sep=>
<,pattern=>
<,varRange=>
<,quote=>
)
Arguments description:
ds- Required, the name of the dataset from which variables are to be taken.
-
sep = %str( )- Optional, default value%str( ), a variables separator on the created list. -
pattern = .*- Optional, default value.*(i.e. any text), a variable name regexp pattern, case INSENSITIVE! -
varRange = _all_- Optional, default value_all_, a named range list of variables. -
quote =- Optional, default value is blank, a quotation symbol to be used around values.
EXAMPLES AND USECASES:
See examples in %getVars() help for the details.
>>> %symdelGlobal() macro: <<<
The %symdelGlobal() macro deletes all global macrovariables
created by the user. The only exceptions are read only variables
and variables the one which starts with SYS, AF, or FSP.
In that case a warning is printed in the log.
One temporary global macrovariable ________________98_76_54_32_10_
and a dataset, in work library, named _%sysfunc(datetime(),hex7.)
are created and deleted during the process.
The %symdelGlobal() macro executes like a pure macro code.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%symdelGlobal(
info
)
Arguments description:
info- Optional, default value should be empty, if set toNOINFOorQUIETthen infos and warnings about variables deletion are suspended.
EXAMPLES AND USECASES:
EXAMPLE 1. Basic use-case one. Delete global macrovariables, info notes and warnings are printed in the log.
%let a = 1;
%let b = 2;
%let c = 3;
%let sys_my_var = 11;
%let af_my_var = 22;
%let fsp_my_var = 33;
%global / readonly read_only_x = 1234567890;
%put _user_;
%symdelGlobal();
%put _user_;
EXAMPLE 2. Basic use-case two. Delete global macrovariables in quite mode No info notes and warnings are printed in the log.
%let a = 1;
%let b = 2;
%let c = 3;
%let sys_my_var = 11;
%let af_my_var = 22;
%let fsp_my_var = 33;
%global / readonly read_only_x = 1234567890;
%put _user_;
%put *%symdelGlobal(NOINFO)*;
%put _user_;
>>> bool. format: <<<
The bool format returns: zero for 0 or missing, one for other values.
EXAMPLES AND USECASES:
It allows for a %sysevalf()'ish
conversion-type [i.e. %sysevalf(1.7 & 4.2, boolean)]
inside the %sysfunc() [e.g. %sysfunc(aFunction(), bool.)]
>>> boolz. format: <<<
The boolz format returns: zero for 0 or missing, one for other values.
Fuzz value is 0.
EXAMPLES AND USECASES:
It allows for a %sysevalf()'ish
conversion-type [i.e. %sysevalf(1.7 & 4.2, boolean)]
inside the %sysfunc() [e.g. %sysfunc(aFunction(), boolz.)]
>>> ceil. format: <<<
The ceil format is a "wrapper" for the ceil() function.
EXAMPLES AND USECASES:
It allows for a %sysevalf()'ish
conversion-type [i.e. %sysevalf(1.7 + 4.2, ceil)]
inside the %sysfunc() [e.g. %sysfunc(aFunction(), ceil.)]
>>> floor. format: <<<
The floor format is a "wrapper" for the floor() function.
EXAMPLES AND USECASES:
It allows for a %sysevalf()'ish
conversion-type [i.e. %sysevalf(1.7 + 4.2, floor)]
inside the %sysfunc() [e.g. %sysfunc(aFunction(), floor.)]
>>> int. format: <<<
The int format is a "wrapper" for the int() function.
EXAMPLES AND USECASES:
It allows for a %sysevalf()'ish
conversion-type [i.e. %sysevalf(1.7 + 4.2, integer)]
inside the %sysfunc() [e.g. %sysfunc(aFunction(), int.)]
>>> arrFill() subroutine: <<<
The arrFill() subroutine is a wrapper for the Call Fillmatrix() [a special FCMP subroutine].
A numeric array is filled with selected numeric value, e.g.
for array A = [. . . .] the subroutine
call arrFill(42, A) returns A = [42 42 42 42]
Caution! Array parameters to subroutine calls must be 1-based.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
call arrFill(N ,A)
Arguments description:
-
N- Numeric value. -
A- Numeric array.
EXAMPLES AND USECASES:
Example 1.
data _null_;
array X[*] a b c;
put "before: " (_all_) (=);
call arrFill(42, X);
put "after: " (_all_) (=);
run;
>>> arrFillC() subroutine: <<<
The arrFillC() subroutine fills a character array with selected character value, e.g.
for array A = [" ", " ", " "] the subroutine
call arrFillC("B", A) returns A = ["B", "B", "B"]
Caution! Array parameters to subroutine calls must be 1-based.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
call arrFillC(C ,A)
Arguments description:
-
C- Character value. -
A- Character array.
EXAMPLES AND USECASES:
Example 1.
data _null_;
array X[*] $ a b c;
put "before: " (_all_) (=);
call arrFillC("ABC", X);
put "after: " (_all_) (=);
run;
>>> arrMissFill() subroutine: <<<
The arrMissFill() subroutine fills
all missing values (i.e. less or equal than .Z)
of a numeric array with selected numeric value, e.g.
for array A = [1 . . 4] the subroutine
call arrMissFill(42, A) returns A = [1 42 42 4]
Caution! Array parameters to subroutine calls must be 1-based.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
call arrMissFill(N ,A)
Arguments description:
-
N- Numeric value. -
A- Numeric array.
EXAMPLES AND USECASES:
Example 1.
data have;
input a b c;
cards4;
1 . 3
. 2 .
. . 3
;;;;
run;
data _null_;
set have ;
array X[*] a b c;
put "before: " (_all_) (=);
call arrMissFill(42, X);
put "after: " (_all_) (=);
run;
>>> arrMissFillC() subroutine: <<<
The arrMissFillC() subroutine fills all missing values of a character array with selected character value, e.g.
for array A = ["A", " ", "C"] the subroutine
call arrMissFillC("B", A) returns A = ["A", "B", "C"]
Caution! Array parameters to subroutine calls must be 1-based.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
call arrMissFillC(C, A)
Arguments description:
-
C- Character value. -
A- Character array.
EXAMPLES AND USECASES:
Example 1.
data have;
infile cards dsd dlm="," missover;
input (a b c) (: $ 1.);
cards4;
A, ,C
,B,
, ,C
;;;;
run;
data _null_;
set have ;
array X[*] $ a b c;
put "before: " (_all_) (=);
call arrMissFillC("X", X);
put "after: " (_all_) (=);
run;
>>> arrMissToLeft() subroutine: <<<
The arrMissToLeft() subroutine shifts
all non-missing (i.e. greater than .Z)
numeric elements to the right side of an array
and missing values to the left, e.g.
for array A = [1 . 2 . 3] the subroutine
call arrMissToLeft(A) returns A = [. . 1 2 3]
All missing values are replaced with the dot (.)
Caution! Array parameters to subroutine calls must be 1-based.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
call arrMissToLeft(A)
Arguments description:
A- Numeric array.
EXAMPLES AND USECASES:
Example 1.
data have;
input a b c;
cards4;
1 . 3
. 2 .
. . 3
;;;;
run;
data _null_;
set have ;
array X[*] a b c;
put "before: " (_all_) (=);
call arrMissToLeft(X);
put "after: " (_all_) (=);
run;
>>> arrMissToLeftC() subroutine: <<<
The arrMissToLeftC() subroutine shifts all non-missing (i.e. different than empty string) character elements to the right side of an array and all missing values to the left, e.g.
for array A = ["A", " ", "B", " ", "C"] the subroutine
call arrMissToLeftC(A) returns A = [" ", " ", "A", "B", "C"]
Caution! Array parameters to subroutine calls must be 1-based.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
call arrMissToLeftC(A)
Arguments description:
A- Character array.
EXAMPLES AND USECASES:
Example 1.
data have;
infile cards dsd dlm="," missover;
input (a b c) (: $ 1.);
cards4;
A, ,C
,B,
, ,C
;;;;
run;
data _null_;
set have ;
array X[*] $ a b c;
put "before: " (_all_) (=);
call arrMissToLeftC(X);
put "after: " (_all_) (=);
run;
>>> arrMissToRight() subroutine: <<<
The arrMissToRight() subroutine shifts
all non-missing (i.e. greater than .Z)
numeric elements to the left side of an array
and missing values to the right, e.g.
for array A = [1 . 2 . 3] the subroutine
call arrMissToRight(A) returns A = [1 2 3 . .]
All missing values are replaced with the dot (.)
Caution! Array parameters to subroutine calls must be 1-based.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
call arrMissToRight(A)
Arguments description:
A- Numeric array.
EXAMPLES AND USECASES:
Example 1.
data have;
input a b c;
cards4;
1 . 3
. 2 .
. . 3
;;;;
run;
data _null_;
set have ;
array X[*] a b c;
put "before: " (_all_) (=);
call arrMissToRight(X);
put "after: " (_all_) (=);
run;
>>> arrMissToRightC() subroutine: <<<
The arrMissToRightC() subroutine shifts all non-missing (i.e. different than empty string) character elements to the left side of an array and missing values to the right, e.g.
for array A = ["A", " ", "B", " ", "C"] the subroutine
call arrMissToRightC(A) returns A = ["A", "B", "C", " ", " "]
Caution! Array parameters to subroutine calls must be 1-based.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
call arrMissToRightC(A)
Arguments description:
A- Character array.
EXAMPLES AND USECASES:
Example 1.
data have;
infile cards dsd dlm="," missover;
input (a b c) (: $ 1.);
cards4;
A, ,C
,B,
, ,C
;;;;
run;
data _null_;
set have ;
array X[*] $ a b c;
put "before: " (_all_) (=);
call arrMissToRightC(X);
put "after: " (_all_) (=);
run;
>>> catXFc() function: <<<
The catXFc() function is a wrapper
of the catX() function but with ability
to format character values.
For array A = ["a", " ", "c"] the
catXFc("upcase.", "*", A) returns "A*C".
If format does not handle nulls they are ignored.
Caution! Array parameters to function calls must be 1-based.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
catXFc(format, delimiter, A)
Arguments description:
-
format- A name of the character format to be used. -
delimiter- A delimiter string to be used. -
A- Character array
EXAMPLES AND USECASES:
Example 1.
data _null_;
t = "t";
u = " ";
v = "v";
array b[*] t u v;
length s $ 17;
s = catXFc("upcase.", "*", B);
put (_all_) (=);
run;
>>> catXFi() function: <<<
The catXFi() function is a wrapper
of the catX() function but with ability
to format numeric values but
IGNORES missing values (i.e. ._, ., .a, ..., .z).
For array A = [0, ., 2] the
catXFi("date9.", "#", A) returns
"01JAN1960#03JAN1960"
Caution! Array parameters to function calls must be 1-based.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
catXFi(format, delimiter, A)
Arguments description:
-
format- A name of the numeric format to be used. -
delimiter- A delimiter string to be used. -
A- Numeric array
EXAMPLES AND USECASES:
Example 1.
data _null_;
x = 1;
y = .;
z = 3;
array a[*] x y z;
length s $ 17;
s = catXFi("z5.", "#", A);
put (_all_) (=);
run;
>>> catXFj() function: <<<
The catXFj() function is a wrapper of the catX() function but with ability to format character values.
For array A = ["a", " ", "c"] the
catXFj("upcase.", "*", A) returns "A**C"
If format does not handle nulls they are printed as an empty string.
Caution! Array parameters to function calls must be 1-based.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
catXFj(format, delimiter, A)
Arguments description:
-
format- A name of the character format to be used. -
delimiter- A delimiter string to be used. -
A- Character array
EXAMPLES AND USECASES:
Example 1.
data _null_;
t = "t";
u = " ";
v = "v";
array b[*] t u v;
length s $ 17;
s = catXFj("upcase.", "*", B);
put (_all_) (=);
run;
>>> catXFn() function: <<<
The catXFn() function is a wrapper
of the catX() function but with ability
to format numeric values.
For array A = [0, 1, 2] the
catXFn("date9.", "#", A) returns
"01JAN1960#02JAN1960#03JAN1960"
Caution! Array parameters to function calls must be 1-based.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
catXFn(format, delimiter, A)
Arguments description:
-
format- A name of the numeric format to be used. -
delimiter- A delimiter string to be used. -
A- Numeric array
EXAMPLES AND USECASES:
Example 1.
data _null_;
x = 1;
y = .;
z = 3;
array a[*] x y z;
length s $ 17;
s = catXFn("z5.", "#", A);
put (_all_) (=);
run;
>>> delDataset() function: <<<
The delDataset() function is a "wrapper"
for the Fdelete() function.
delDataset() function uses a text string with
a dataset name as an argument.
Function checks for *.sas7bdat, *.sas7bndx,
and *.sas7bvew files and delete them.
Return code of 0 means dataset was deleted.
For compound library files are deleted from ALL locations!
Note: Currently only the BASE SAS engine datasets/views are deleted.
Tested on Windows and Linux. Not tested on Z/OS.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
delDataset(lbds_)
Arguments description:
lbds_- Required, character argument containing name of the dataset/view to be deleted. The_last_special name is honored.
EXAMPLES AND USECASES:
EXAMPLE 1.
data TEST1 TEST2(index=(x));
x = 17;
run;
data TEST3 / view=TEST3;
set test1;
run;
data _null_;
p = delDataset("WORK.TEST1");
put p=;
p = delDataset("TEST2");
put p=;
p = delDataset("WORK.TEST3");
put p=;
run;
Example 2.
data TEST4;
x=42;
run;
data _null_;
p = delDataset("_LAST_");
put p=;
run;
Example 3.
options dlcreatedir;
libname user "%sysfunc(pathname(work))/user";
data TEST5;
x=42;
run;
data _null_;
p = delDataset("test5");
put p=;
run;
libname user clear;
Example 4.
data TEST6;
x=42;
run;
%put *%sysfunc(delDataset(test6))*;
Example 5.
options dlcreatedir;
libname L1 "%sysfunc(pathname(work))/L)1";
libname L2 "%sysfunc(pathname(work))/L(2";
libname L3 "%sysfunc(pathname(work))/L'3";
data L1.TEST7 L2.TEST7 L3.TEST7;
x=42;
run;
libname L12 ("%sysfunc(pathname(work))/L(1" "%sysfunc(pathname(work))/L)2");
libname L1L2 (L2 L3);
%put *%sysfunc(delDataset(L12.test7))*;
%put *%sysfunc(delDataset(L1L2.test7))*;
>>> qsortInCbyProcProto() proto function: <<<
The qsortInCbyProcProto() is external C function, this is the implementation of the Quick Sort algorithm.
The function is used internally by functions in the BasePlus package.
Asumptions:
- smaller subarray is sorted first,
- subarrays of size < 11 are sorted by insertion sort,
- pivot is selected as median of low index value, high index value, and (low+high)/2 index value.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!CAUTION! Sorted array CANNOT contains SAS missing values !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
SYNTAX:
The basic syntax is the following:
qsortInCbyProcProto(arr, low, high)
Arguments description:
-
arr- An array of double type to be sorted. -
low- An integer low index of starting position (from which the sorting is done). -
high- An integer high index of ending position (up to which the sorting is done).
REFERENCES:
Reference 1.
Insertion sort for arrays smaller then 11 elements:
Based on the code from the following WikiBooks page [2020.08.14]:
https://pl.wikibooks.org/wiki/Kody_%C5%BAr%C3%B3d%C5%82owe/Sortowanie_przez_wstawianie
Reference 2.
Iterative Quick Sort:
Based on the code from the following pages [2020.08.14]:
https://www.geeksforgeeks.org/iterative-quick-sort/
https://www.geeksforgeeks.org/c-program-for-iterative-quick-sort/
>>> fromMissingToNumberBS() function: <<<
The fromMissingToNumberBS() function gets numeric missing value or a number as an argument and returns an integer from 1 to 29.
For a numeric missing argument the returned values are:
- 1 for
._ - 2 for
. - 3 for
.a - ...
- 28 for
.zand - 29 for all other.
The function is used internally by functions in the BasePlus package.
For missing value arguments the function
is an inverse of the fromNumberToMissing() function.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
fromMissingToNumberBS(x)
Arguments description:
x- A numeric missing value or a number.
EXAMPLES AND USECASES:
EXAMPLE 1.
data _null_;
do x = ._, ., .a, .b, .c, 42;
y = fromMissingToNumberBS(x);
put x= y=;
end;
run;
>>> fromNumberToMissing() function: <<<
The fromNumberToMissing() function gets a number as an argument and returns a numeric missing value or zero.
For a numeric argument the returned values are:
._for 1.for 2.afor 3- ...
.zfor 28 and0for all other.
The function is used internally by functions in the BasePlus package.
For arguments 1,2,3, ..., and 28 the function
is an inverse of the fromMissingToNumberBS() function.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
fromNumberToMissing(x)
Arguments description:
x- A numeric value.
EXAMPLES AND USECASES:
EXAMPLE 1.
data _null_;
do x = 1 to 29;
y = fromNumberToMissing(x);
put x= y=;
end;
run;
>>> quickSort4NotMiss() subroutine: <<<
The quickSort4NotMiss() subroutine is an alternative to the
CALL SORTN() subroutine for 1-based big arrays (i.e. > 10'000'000 elements)
when memory used by call sortn() may be an issue.
For smaller arrays the memory footprint is not significant.
The subroutine is based on an iterative quick sort algorithm
implemented in the qsortInCbyProcProto() C prototype function.
Caution 1! Array CANNOT contains missing values!
Caution 2! Array parameters to subroutine calls must be 1-based.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
call quickSort4NotMiss(A)
Arguments description:
A- Argument is a 1-based array of NOT missing numeric values.
EXAMPLES AND USECASES:
EXAMPLE 1. For session with 8GB of RAM, array of size 250'000'000 with values in range from 0 to 99'999'999 and NO missing values.
%let size = 250000000;
options fullstimer;
data _null_;
array test[&size.] _temporary_ ;
t = time();
call streaminit(123);
do _N_ = &size. to 1 by -1;
test[_N_] = int(100000000*rand("uniform"));
end;
t = time() - t;
put "Array population time: " t;
put "First 50 elements before sorting:";
do _N_ = 1 to 20;
put test[_N_] = @;
end;
t = time();
call quickSort4NotMiss (test);
t = time()-t;
put "Sorting time: " / t=;
put; put "First 50 elements after sorting:";
do _N_ = 1 to 20;
put test[_N_] = @;
end;
run;
Example 2. Resources comparison for session with 8GB of RAM.
Array of size 250'000'000 with random values from 0 to 999'999'999 and NO missing values.
Array:
Population time 8.82s
memory 1'953'470.62k
OS Memory 1'977'436.00k
Call quickSort4NotMiss:
Sorting time 66.92s
Memory 1'954'683.06k
OS Memory 1'977'436.00k
Call quickSortLight:
Sorting time 70.98s
Memory 1'955'479.71k
OS Memory 1'977'436.00k
>>> quickSortHash() subroutine: <<<
The quickSortHash() subroutine is an alternative to the
CALL SORTN() subroutine for 1-based big arrays (i.e. > 10'000'000 elements)
when memory used by call sortn() may be an issue.
For smaller arrays the memory footprint is not significant.
The subroutine is based on an iterative quick sort algorithm
implemented in the qsortInCbyProcProto() C prototype function.
The number of "sparse distinct data values" is set to 100'000 to
use the hash sort instead of the quick sort.
E.g. when number of unique values for sorting is less then
100'000 then an ordered hash table is used to store the data
and their count and sort them.
Caution! Array parameters to subroutine calls must be 1-based.
Note! Due to improper memory reporting/releasing for hash tables in FCMP procedure the reported memory used after running the function may not be in line with the RAM memory required for processing.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
call quickSortHash(A)
Arguments description:
A- Argument is a 1-based array of numeric values.
EXAMPLES AND USECASES:
EXAMPLE 1. For session with 8GB of RAM Array of size 250'000'000 with values in range from 0 to 99'999'999 and around 10% of various missing values.
%let size = 250000000;
options fullstimer;
data _null_;
array test[&size.] _temporary_ ;
array m[0:27] _temporary_
(._ . .A .B .C .D .E .F .G .H .I .J .K .L
.M .N .O .P .Q .R .S .T .U .V .W .X .Y .Z);
t = time();
call streaminit(123);
do _N_ = &size. to 1 by -1;
_I_ + 1;
if rand("uniform") > 0.1 then test[_I_] = int(100000000*rand("uniform"));
else test[_I_] = m[mod(_N_,28)];
end;
t = time() - t;
put "Array population time: " t;
put "First 50 elements before sorting:";
do _N_ = 1 to 20;
put test[_N_] = @;
end;
t = time();
call quickSortHash (test);
t = time()-t;
put "Sorting time: " / t=;
put; put "First 50 elements after sorting:";
do _N_ = 1 to 20;
put test[_N_] = @;
end;
run;
Example 2. For session with 8GB of RAM Array of size 250'000'000 with values in range from 0 to 9'999 and around 10% of various missing values.
%let size = 250000000;
options fullstimer;
data _null_;
array test[&size.] _temporary_ ;
array m[0:27] _temporary_
(._ . .A .B .C .D .E .F .G .H .I .J .K .L
.M .N .O .P .Q .R .S .T .U .V .W .X .Y .Z);
t = time();
call streaminit(123);
do _N_ = &size. to 1 by -1;
_I_ + 1;
if rand("uniform") > 0.1 then test[_I_] = int(10000*rand("uniform"));
else test[_I_] = m[mod(_N_,28)];
end;
t = time() - t;
put "Array population time: " t;
put "First 50 elements before sorting:";
do _N_ = 1 to 20;
put test[_N_] = @;
end;
t = time();
call quickSortHash (test);
t = time()-t;
put "Sorting time: " / t=;
put; put "First 50 elements after sorting:";
do _N_ = 1 to 20;
put test[_N_] = @;
end;
run;
Example 3. Resources comparison for session with 8GB of RAM
A) Array of size 10'000'000 with random values from 0 to 9'999 range (sparse) and around 10% of missing data.
Array:
Population time 0.61s
Memory 78'468.50k
OS Memory 101'668.00k
Call sortn:
Sorting time 0.87s
Memory 1'120'261.53k
OS Memory 1'244'968.00k
Call quickSortHash:
Sorting time 6.76s
Memory 1'222'242.75k(*)
OS Memory 1'402'920.00k(*)
Call quickSortLight:
Sorting time 23.45s
Memory 80'527.75k
OS Memory 101'924.00k
B) Array of size 10'000'000 with random values from 0 to 99'999'999 range (dense) and around 10% of missing data.
Array:
Population time 0.6s
Memory 78'463.65k
OS Memory 101'924.00k
Call sortn:
Sorting time 1.51s
Memory 1'120'253.53k
OS Memory 1'244'968.00k
Call quickSortHash:
Sorting time 6.28s
Memory 1'222'241.93k(*)
OS Memory 1'402'920.00k(*)
Call quickSortLight:
Sorting time 0.78s
Memory 80'669.28k
OS Memory 102'436.00k
C) Array of size 250'000'000 with random values from 0 to 999'999'999 range (dense) and around 10% of missing data.
Array:
Population time 15.34s
memory 1'953'471.81k
OS Memory 1'977'436.00k
Call sortn:
FATAL: Insufficient memory to execute DATA step program.
Aborted during the COMPILATION phase.
ERROR: The SAS System stopped processing this step
because of insufficient memory.
Call quickSortHash:
Sorting time 124.68s
Memory 7'573'720.34k(*)
OS Memory 8'388'448.00k(*)
Call quickSortLight:
Sorting time 72.41s
Memory 1'955'520.78k
OS Memory 1'977'180.00k
D) Array of size 250'000'000 with random values from 0 to 99'999 range (sparse) and around 10% of missing data.
Array:
Population time 16.07
Memory 1'953'469.78k
OS Memory 1'977'180.00k
Call sortn:
FATAL: Insufficient memory to execute DATA step program.
Aborted during the COMPILATION phase.
ERROR: The SAS System stopped processing this step
because of insufficient memory.
Call quickSortHash:
Sorting time 123.5s
Memory 7'573'722.03k
OS Memory 8'388'448.00k
Call quickSortLight:
Sorting time 1'338.25s
Memory 1'955'529.90k
OS Memory 1'977'436.00k
(*) When using hash tables in Proc FCMP the RAM
usage is not indicated properly. The memory
allocation is reported up to the session limit
and then reused if needed. The really required
memory is in fact much less then reported.
>>> quickSortHashSDDV() subroutine: <<<
The quickSortHashSDDV() subroutine is an alternative to the
CALL SORTN() subroutine for 1-based big arrays (i.e. > 10'000'000 elements)
when memory used by call sortn() may be an issue.
For smaller arrays the memory footprint is not significant.
The subroutine is based on an iterative quick sort algorithm
implemented in the qsortInCbyProcProto() C prototype function.
The number of "sparse distinct data values" (argument SDDV) may
be adjusted to use the hash sort instead of the quick sort.
E.g. when number of unique values for sorting is less then
some N then an ordered hash table is used to store the data
and their count and sort them.
Caution! Array parameters to subroutine calls must be 1-based.
Note! Due to improper memory reporting/releasing for hash tables in FCMP procedure the report memory used after running the function may not be in line with the RAM memory required for processing.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
call quickSortHashSDDV(A, SDDV)
Arguments description:
-
A- Argument is a 1-based array of numeric values. -
SDDV- A number of distinct data values, e.g. 100'000.
EXAMPLES AND USECASES:
EXAMPLE 1. For session with 8GB of RAM Array of size 250'000'000 with values in range from 0 to 99'999'999 and around 10% of various missing values.
%let size = 250000000;
options fullstimer;
data _null_;
array test[&size.] _temporary_ ;
array m[0:27] _temporary_
(._ . .A .B .C .D .E .F .G .H .I .J .K .L
.M .N .O .P .Q .R .S .T .U .V .W .X .Y .Z);
t = time();
call streaminit(123);
do _N_ = &size. to 1 by -1;
_I_ + 1;
if rand("uniform") > 0.1 then test[_I_] = int(100000000*rand("uniform"));
else test[_I_] = m[mod(_N_,28)];
end;
t = time() - t;
put "Array population time: " t;
put "First 50 elements before sorting:";
do _N_ = 1 to 20;
put test[_N_] = @;
end;
t = time();
call quickSortHashSDDV (test, 2e4);
t = time()-t;
put "Sorting time: " / t=;
put; put "First 50 elements after sorting:";
do _N_ = 1 to 20;
put test[_N_] = @;
end;
run;
Example 2. For session with 8GB of RAM Array of size 250'000'000 with values in range from 0 to 9'999 and around 10% of various missing values.
%let size = 250000000;
options fullstimer;
data _null_;
array test[&size.] _temporary_ ;
array m[0:27] _temporary_
(._ . .A .B .C .D .E .F .G .H .I .J .K .L
.M .N .O .P .Q .R .S .T .U .V .W .X .Y .Z);
t = time();
call streaminit(123);
do _N_ = &size. to 1 by -1;
_I_ + 1;
if rand("uniform") > 0.1 then test[_I_] = int(10000*rand("uniform"));
else test[_I_] = m[mod(_N_,28)];
end;
t = time() - t;
put "Array population time: " t;
put "First 50 elements before sorting:";
do _N_ = 1 to 20;
put test[_N_] = @;
end;
t = time();
call quickSortHashSDDV (test, 2e4);
t = time()-t;
put "Sorting time: " / t=;
put; put "First 50 elements after sorting:";
do _N_ = 1 to 20;
put test[_N_] = @;
end;
run;
>>> quickSortLight() subroutine: <<<
The quickSortLight() subroutine is an alternative to the
CALL SORTN() subroutine for 1-based big arrays (i.e. > 10'000'000 elements)
when memory used by call sortn() may be an issue.
For smaller arrays the memory footprint is not significant.
The subroutine is based on an iterative quick sort algorithm
implemented in the qsortInCbyProcProto() C prototype function.
Caution! Array parameters to subroutine calls must be 1-based.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
call quickSortLight(A)
Arguments description:
A- Argument is a 1-based array of numeric values.
EXAMPLES AND USECASES:
EXAMPLE 1. For session with 8GB of RAM Array of size 250'000'000 with values in range from 0 to 99'999'999 and around 10% of various missing values.
%let size = 250000000;
options fullstimer;
data _null_;
array test[&size.] _temporary_ ;
array m[0:27] _temporary_
(._ . .A .B .C .D .E .F .G .H .I .J .K .L
.M .N .O .P .Q .R .S .T .U .V .W .X .Y .Z);
t = time();
call streaminit(123);
do _N_ = &size. to 1 by -1;
_I_ + 1;
if rand("uniform") > 0.1 then test[_I_] = int(100000000*rand("uniform"));
else test[_I_] = m[mod(_N_,28)];
end;
t = time() - t;
put "Array population time: " t;
put "First 50 elements before sorting:";
do _N_ = 1 to 20;
put test[_N_] = @;
end;
t = time();
call quickSortLight (test);
t = time()-t;
put "Sorting time: " / t=;
put; put "First 50 elements after sorting:";
do _N_ = 1 to 20;
put test[_N_] = @;
end;
run;
Example 2. Resources comparison for session with 8GB of RAM.
Array of size 250'000'000 with random values from 0 to 999'999'999 and NO missing values.
Array:
Population time 8.82s
memory 1'953'470.62k
OS Memory 1'977'436.00k
Call quickSort4NotMiss:
Sorting time 66.92s
Memory 1'954'683.06k
OS Memory 1'977'436.00k
Call quickSortLight:
Sorting time 70.98s
Memory 1'955'479.71k
OS Memory 1'977'436.00k
Example 3. Resources comparison for session with 8GB of RAM
A) Array of size 10'000'000 with random values from 0 to 9'999 range (sparse) and around 10% of missing data.
Array:
Population time 0.61s
Memory 78'468.50k
OS Memory 101'668.00k
Call sortn:
Sorting time 0.87s
Memory 1'120'261.53k
OS Memory 1'244'968.00k
Call quickSortHash:
Sorting time 6.76s
Memory 1'222'242.75k(*)
OS Memory 1'402'920.00k(*)
Call quickSortLight:
Sorting time 23.45s
Memory 80'527.75k
OS Memory 101'924.00k
B) Array of size 10'000'000 with random values from 0 to 99'999'999 range (dense) and around 10% of missing data.
Array:
Population time 0.6s
Memory 78'463.65k
OS Memory 101'924.00k
Call sortn:
Sorting time 1.51s
Memory 1'120'253.53k
OS Memory 1'244'968.00k
Call quickSortHash:
Sorting time 6.28s
Memory 1'222'241.93k(*)
OS Memory 1'402'920.00k(*)
Call quickSortLight:
Sorting time 0.78s
Memory 80'669.28k
OS Memory 102'436.00k
C) Array of size 250'000'000 with random values from 0 to 999'999'999 range (dense) and around 10% of missing data.
Array:
Population time 15.34s
memory 1'953'471.81k
OS Memory 1'977'436.00k
Call sortn:
FATAL: Insufficient memory to execute DATA step program.
Aborted during the COMPILATION phase.
ERROR: The SAS System stopped processing this step
because of insufficient memory.
Call quickSortHash:
Sorting time 124.68s
Memory 7'573'720.34k(*)
OS Memory 8'388'448.00k(*)
Call quickSortLight:
Sorting time 72.41s
Memory 1'955'520.78k
OS Memory 1'977'180.00k
D) Array of size 250'000'000 with random values from 0 to 99'999 range (sparse) and around 10% of missing data.
Array:
Population time 16.07
Memory 1'953'469.78k
OS Memory 1'977'180.00k
Call sortn:
FATAL: Insufficient memory to execute DATA step program.
Aborted during the COMPILATION phase.
ERROR: The SAS System stopped processing this step
because of insufficient memory.
Call quickSortHash:
Sorting time 123.5s
Memory 7'573'722.03k
OS Memory 8'388'448.00k
Call quickSortLight:
Sorting time 1'338.25s
Memory 1'955'529.90k
OS Memory 1'977'436.00k
(*) When using hash tables in Proc FCMP the RAM
usage is not indicated properly. The memory
allocation is reported up to the session limit
and then reused if needed. The really required
memory is in fact much less then reported.
>>> %dedupListS() macro: <<<
The %dedupListS() macro deletes duplicated values from
a SPACE separated list of values. List, including separators,
can be no longer than a value carried by a single macrovariable.
Returned value is unquoted.
The %dedupListS() macro executes like a pure macro code.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%dedupListS(
list of space separated values
)
Arguments description:
list- A list of space separated values.
EXAMPLES AND USECASES:
EXAMPLE 1. Basic use-case one. Delete duplicated values from a list.
%put *%dedupListS(a b c b c)*;
%put *%dedupListS(a b,c b,c)*;
%put *%dedupListS(%str(a b c b c))*;
%put *%dedupListS(%str(a) %str(b) %str(c) b c)*;
EXAMPLE 2. Macro variable as an argument. Delete duplicated values from a list.
%let list = 4 5 6 1 2 3 1 2 3 4 5 6;
%put *%dedupListS(&list.)*;
>>> %dedupListC() macro: <<<
The %dedupListC() macro deletes duplicated values from
a COMMA separated list of values. List, including separators,
can be no longer than a value carried by a single macrovariable.
Returned value is unquoted. Leading and trailing spaces are ignored.
The %dedupListC() macro executes like a pure macro code.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%dedupListC(
list,of,comma,separated,values
)
Arguments description:
list- A list of comma separated values.
EXAMPLES AND USECASES:
EXAMPLE 1. Basic use-case one. Delete duplicated values from a list.
%put *%dedupListC(a,b,c,b,c)*;
%put *%dedupListC(a,b c,b c)*;
%put *%dedupListC(%str(a,b,c,b,c))*;
%put *%dedupListC(%str(a),%str(b),%str(c),b,c)*;
EXAMPLE 2. Leading and trailing spaces are ignored. Delete duplicated values from a list.
%put *%dedupListC( a , b b , c , b b, c )*;
EXAMPLE 3. Macro variable as an argument. Delete duplicated values from a list.
%let list = 4, 5, 6, 1, 2, 3, 1, 2, 3, 4, 5, 6;
%put *%dedupListC(&list.)*;
>>> %dedupListP() macro: <<<
The %dedupListP() macro deletes duplicated values from
a PIPE(|) separated list of values. List, including separators,
can be no longer than a value carried by a single macrovariable.
Returned value is unquoted. Leading and trailing spaces are ignored.
The %dedupListP() macro executes like a pure macro code.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%dedupListP(
list|of|pipe|separated|values
)
Arguments description:
list- A list of pipe separated values.
EXAMPLES AND USECASES:
EXAMPLE 1. Basic use-case one. Delete duplicated values from a list.
%put *%dedupListP(a|b|c|b|c)*;
%put *%dedupListP(a|b c|b c)*;
%put *%dedupListP(%str(a|b|c|b|c))*;
%put *%dedupListP(%str(a)|%str(b)|%str(c)|b|c)*;
EXAMPLE 2. Leading and trailing spaces are ignored. Delete duplicated values from a list.
%put *%dedupListP( a | b b | c | b b| c )*;
EXAMPLE 3. Macro variable as an argument. Delete duplicated values from a list.
%let list = 4|5|6|1|2|3|1|2|3|4|5|6;
%put *%dedupListP(&list.)*;
>>> %dedupListX() macro: <<<
The %dedupListX() macro deletes duplicated values from
a X separated list of values, where the X represents
a single character separator. List, including separators,
can be no longer than a value carried by a single macrovariable.
Caution. The value of X has to be in the first byte of the list,
just after the opening bracket, i.e. (X...).
Returned value is unquoted. Leading and trailing spaces are ignored.
The %dedupListX() macro executes like a pure macro code.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%dedupListX(
XlistXofXxXseparatedXvalues
)
Arguments description:
list- A list of X separated values.
EXAMPLES AND USECASES:
EXAMPLE 1. Basic use-case one. Delete duplicated values from a list.
%put *%dedupListX(|a|b|c|b|c)*;
%put *%dedupListX( a b c b c)*;
%put *%dedupListX(,a,b,c,b,c)*;
%put *%dedupListX(XaXbXcXbXc)*;
%put *%dedupListX(/a/b/c/b/c)*;
data _null_;
x = "%dedupListX(%str(;a;b;c;b;c))";
put x=;
run;
EXAMPLE 2. Leading and trailing spaces are ignored. Delete duplicated values from a list.
%put *%dedupListX(| a | b.b | c | b.b| c )*;
%put *%dedupListX(. a . b b . c . b b. c )*;
EXAMPLE 3. Macro variable as an argument. Delete duplicated values from a list.
%let list = 4$5.5$6$1$2$3$1$2$3$4$5.5$6;
%put *%dedupListX($&list.)*;
%let list = 4$ 5.5$ 6$ 1$ 2$ 3$ 1$ 2$ 3$ 4$ 5.5$ 6$;
%put *%dedupListX( &list.)*;
>>> %QdedupListX() macro: <<<
The %QdedupListX() macro deletes duplicated values from
a X separated list of values, where the X represents
a single character separator. List, including separators,
can be no longer than a value carried by a single macrovariable.
Caution. The value of X has to be in the first byte of the list,
just after the opening bracket, i.e. (X...).
Returned value is quoted with %superq(). Leading and trailing spaces are ignored.
The %QdedupListX() macro executes like a pure macro code.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%QdedupListX(
XlistXofXxXseparatedXvalues
)
Arguments description:
list- A list of X separated values.
EXAMPLES AND USECASES:
EXAMPLE 1. Basic use-case one. Delete duplicated values from a list.
%put *%QdedupListX(|a|b|c|b|c)*;
%put *%QdedupListX( a b c b c)*;
%put *%QdedupListX(,a,b,c,b,c)*;
%put *%QdedupListX(XaXbXcXbXc)*;
%put *%QdedupListX(/a/b/c/b/c)*;
%put *%QdedupListX(%str(;a;b;c;b;c))*;
%put *%QdedupListX(%nrstr(&a&b&c&b&c))*;
%put *%QdedupListX(%nrstr(%a%b%c%b%c))*;
EXAMPLE 2. Leading and trailing spaces are ignored. Delete duplicated values from a list.
%put *%QdedupListX(| a | b.b | c | b.b| c )*;
%put *%QdedupListX(. a . b b . c . b b. c )*;
EXAMPLE 3. Macro variable as an argument. Delete duplicated values from a list.
%let list = 4$5.5$6$1$2$3$1$2$3$4$5.5$6;
%put *%QdedupListX($&list.)*;
%let list = 4$ 5.5$ 6$ 1$ 2$ 3$ 1$ 2$ 3$ 4$ 5.5$ 6$;
%put *%QdedupListX( &list.)*;
>>> brackets. format: <<<
The brackets format adds brackets around a text or a number. Leading and trailing spaces are dropped before adding brackets.
EXAMPLES AND USECASES:
Example 1.
data _null_;
input x;
if x < 0 then put x= brackets.;
else put x= best32.;
cards;
2
1
0
-1
-2
;
run;
>>> semicolon. format: <<<
The semicolon format adds semicolon after text or number. Leading and trailing spaces are dropped before adding semicolon.
EXAMPLES AND USECASES:
Example 1.
data _null_;
x = 1;
y = "A";
put x= semicolon. y= $semicolon.;
run;
>>> bracketsC() function: <<<
The bracketsC() function is internal function used by the brackets format. Returns character value of length 32767.
SYNTAX:
The basic syntax is the following:
bracketsC(X)
Arguments description:
X- Character value.
>>> bracketsN() function: <<<
The bracketsN() function is internal function used by the brackets format. Returns character value of length 34.
SYNTAX:
The basic syntax is the following:
bracketsN(X)
Arguments description:
X- Numeric value.
>>> semicolonC() function: <<<
The semicolonC() function is internal function used by the semicolon format. Returns character value of length 32767.
SYNTAX:
The basic syntax is the following:
semicolonC(X)
Arguments description:
X- Character value.
>>> semicolonN() function: <<<
The semicolonN() function is internal function used by the semicolon format. Returns character value of length 33.
SYNTAX:
The basic syntax is the following:
semicolonN(X)
Arguments description:
X- Numeric value.
>>> %QzipEvalf() macro: <<<
The zipEvalf() and QzipEvalf() macro functions allow to use a function on elements of pair of space separated lists.
For two space separated lists of text strings the corresponding elements are taken and the macro applies a function, provided by user, to calculate result of the function on taken elements.
When one of the lists is shorter then elements are "reused" starting from the beginning.
The zipEvalf() returns unquoted value [by %unquote()]. The QzipEvalf() returns quoted value [by %superq()].
See examples below for the details.
The %QzipEvalf() macro executes like a pure macro code.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%QzipEvalf(
first
,second
<,function=>
<,operator=>
<,argBf=>
<,argMd=>
<,argAf=>
<,format=>
)
Arguments description:
-
first- Required, a space separated list of texts. -
second- Required, a space separated list of texts.
-
function = cat- Optional, default value iscat, a function which will be applied to corresponding pairs of elements of the first and the second list. -
operator =- Optional, default value is empty, arithmetic infix operator used with elements the first and the second list. The first list is used on the left side of the operator the second list is used on the right side of the operator. -
argBf =- Optional, default value is empty, arguments of the function inserted before elements the first list. If multiple should be comma separated. -
argMd =- Optional, default value is empty, arguments of the function inserted between elements the first list and the second list. If multiple should be comma separated. -
argAf =- Optional, default value is empty, arguments of the function inserted after elements the second list. If multiple should be comma separated. -
format=- Optional, default value is empty, indicates a format which should be used to format the result, does not work when theoperator=is used.
EXAMPLES AND USECASES:
See examples in %zipEvalf() help for the details.
>>> %zipEvalf() macro: <<<
The zipEvalf() and QzipEvalf() macro functions allow to use a function on elements of pair of space separated lists.
For two space separated lists of text strings the corresponding elements are taken and the macro applies a function, provided by user, to calculate result of the function on taken elements.
When one of the lists is shorter then elements are "reused" starting from the beginning.
The zipEvalf() returns unquoted value [by %unquote()]. The QzipEvalf() returns quoted value [by %superq()].
See examples below for the details.
The %zipEvalf() macro executes like a pure macro code.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%zipEvalf(
first
,second
<,function=>
<,operator=>
<,argBf=>
<,argMd=>
<,argAf=>
<,format=>
)
Arguments description:
-
first- Required, a space separated list of texts. -
second- Required, a space separated list of texts.
-
function = cat- Optional, default value iscat, a function which will be applied to corresponding pairs of elements of the first and the second list. -
operator =- Optional, default value is empty, arithmetic infix operator used with elements the first and the second list. The first list is used on the left side of the operator the second list is used on the right side of the operator. -
argBf =- Optional, default value is empty, arguments of the function inserted before elements the first list. If multiple should be comma separated. -
argMd =- Optional, default value is empty, arguments of the function inserted between elements the first list and the second list. If multiple should be comma separated. -
argAf =- Optional, default value is empty, arguments of the function inserted after elements the second list. If multiple should be comma separated. -
format=- Optional, default value is empty, indicates a format which should be used to format the result, does not work when theoperator=is used.
EXAMPLES AND USECASES:
EXAMPLE 1. Simple concatenation of elements:
%let x = %zipEvalf(1 2 3 4 5 6, q w e r t y);
%put &=x;
EXAMPLE 2. Shorter list is "reused":
%let x = %zipEvalf(1 2 3 4 5 6, a b c);
%put &=x;
EXAMPLE 3. Use of the operator=, shorter list is "reused":
%let y = %zipEvalf(1 2 3 4 5 6, 100 200, operator = +);
%put &=y;
%let z = %zipEvalf(1 2 3 4 5 6 8 9 10, 1 2 3 4 5 6 8 9 10, operator = **);
%put &=z;
EXAMPLE 4. Format result:
%let x = %zipEvalf(1 2 3 4 5 6, q w e r t y, format=$upcase.);
%put &=x;
%put *
%zipEvalf(
ą ż ś ź ę ć ń ó ł
,Ą Ż Ś Ź Ę Ć Ń Ó Ł
,format = $brackets.
)
*;
EXAMPLE 5. Use with macrovariables:
%let abc = 10 100 1000;
%put *
%zipEvalf(
%str(1 2 3 4 5 6 7 8 9)
,&abc.
,function = sum
)
*;
EXAMPLE 6. If one of elements is empty:
%put *
%zipEvalf(
abc efg
,
)
*;
EXAMPLE 7. Use of the function=, shorter list is "reused":
%put *
%zipEvalf(
a b c
,efg
,function = catx
,argBf = %str(,)
,format = $brackets.
)
*;
%put *
%zipEvalf(
a b c
,efg
,function = catx
,argBf = %str( )
,format = $upcase.
)
*;
%put *
%zipEvalf(
%str(! @ # $ [ ] % ^ & * )
,1 2 3 4 5 6 7 8 9
,function = catx
,argBf = %str( )
,format = $quote.
)
*;
EXAMPLE 8. Use inside resolve:
data _null_;
z = resolve('
%zipEvalf(
%nrstr(! @ # $ [ ] % ^ & *)
,1 2 3 4 5 6 7 8 9
,function = catx
,argBf = %str(.)
,format = $quote.
)');
put z=;
run;
EXAMPLE 9. Use in data step:
data test;
%zipEvalf(
a b c d e f g
,1 2 3 4 5 6 7
,function = catx
,argBf = =
,format = $semicolon.
)
run;
EXAMPLE 10. With 9.4M6 hashing() function:
%put %zipEvalf(MD5 SHA1 SHA256 SHA384 SHA512 CRC32, abcd, function = HASHING);
EXAMPLE 11. Use middle argument:
%let x = %zipEvalf(1 2 3 4 5 6, 2020, argMd=5, function=MDY, format=date11.);
%put &=x;
>>> %functionExists() macro: <<<
The functionExists() macro function tests
if given funcion exists in the SAS session.
The sashelp.vfunc view is used.
See examples below for the details.
The %functionExists() macro executes like a pure macro code.
The function is a result of cooperation with Allan Bowe
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%functionExists(
funName
)
Arguments description:
funName- Required, the name of the function existence of which you are testing.
EXAMPLES AND USECASES:
EXAMPLE 1. Test if function exists:
%put %functionExists(HASHING);
%put %functionExists(COSsinLOG);
>>> %RainCloudPlot() macro: <<<
The RainCloudPlot() macro allow to plot Rain Cloud plots, i.e. pots of kernel density estimates, jitter data values, and box-and-whiskers plot.
See examples below for the details.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%RainCloudPlot(
DS
,gr
,vars
<,WidthPX=>
<,HeightPX=>
<,boxPlot=>
<,roundFactor=>
<,rainDropSize=>
<,boxPlotSymbolSize=>
<,colorsList=>
<,monochrome=>
<,antialiasMax=>
<,title=>
<,footnote=>
<,catLabels=>
<,xLabels=>
<,catLabelPos=>
<,xLabelPos=>
<,catLabelAttrs=>
<,xLabelAttrs=>
<,formated=>
<,y2axis=>
<,y2axisLevels=>
<,y2axisValueAttrs=>
<,xaxisValueAttrs=>
<,xaxisTickstyle=>
<,sganno=>
<,odsGraphicsOptions=>
<,sgPlotOptions=>
<,VSCALE=>
<,KERNEL_K=>
<,KERNEL_C=>
<,cleanTempData=>
)
Arguments description:
-
DS- Required, name of the dataset from which variables are to be taken. -
gr- Required, name of the grouping variable. When more than one variable is specified separate plots are rendered. Can be numeric or character. -
vars- Required, name of the aggregated numeric variable. When more than one variable is specified separate plots are rendered.
Plot related options:
-
WidthPX- Optional, default value1200. Total width of the plot in pixels. -
HeightPX- Optional, default value220. Partial height of the plot in pixels. Total height is calculated as#GROUPS x HeightPX. -
boxPlot- Optional, default value1. Indicates if the Box Plot should be added. -
roundFactor- Optional, default value0.000001. Rounding level when calculating maximum value of the cloud chart. Should be adjusted to data granularity level, e.g. for data with value around1e-8should be decreased. -
rainDropSize- Optional, default value5px. Size of data points in the "rain" plot. -
boxPlotSymbolSize- Optional, default value8px. Size of symbols on the box plot. -
colorsList- Optional, default value is empty. List of colours for plotting. Empty indicates that the default list will be used. -
monochrome- Optional, default value0. Indicates if the default list of colours should be gray-scale. -
antialiasMax- Optional, default value is empty. Sets a value to the ODS graphicsANTIALIASMAXoption. When empty the value is calculated from data. -
title- Optional, default value - see notes below. Provides a list of titles printed on the plot. For details see notes below. -
footnote- Optional, default value - see notes below. Provides a list of titles printed on the plot. For details see notes below. -
catLabels- Optional, default value is empty. List of values for group axix labels (vertical). When empty a grouping variable name is used. For details see notes below. -
xLabels- Optional, default value is empty. List of values for data variable axix labels (horizontal). When empty a data variable name is used. For details see notes below. -
catLabelPos- Optional, default valueDATACENTER. Indicates position of the label on group axix (vertical). Allowed values areBOTTOM,CENTER,DATACENTER, andTOP. -
xLabelPos- Optional, default valueDATACENTER. Indicates position of the label on data axix (horizontal). Allowed values areLEFT,CENTER,DATACENTER, andRIGHT. -
catLabelAttrs- Optional, default value is empty. List of attributes for group axix labels (vertical). For details see notes below. -
xLabelAttrs- Optional, default value is empty. List of attributes for data variable axix labels (horizontal). For details see notes below. -
formated- Optional, default value0. Indicates if values of the grouping variable should be formated. -
y2axis- Optional, default value1. Indicates if the right vertical axix should be displayed. -
y2axisLevels- Optional, default value4. Indicates if the number of expected levels of values printed on the right vertical axix. -
y2axisValueAttrs- Optional, default valueColor=Grey. Allows to modify Y2 axis values attributes. -
xaxisValueAttrs- Optional, default valueColor=Grey. Allows to modify X axis values attributes. -
xaxisTickstyle- Optional, default valueINSIDE. Allows to modify X axis tick style. Allowed values areOUTSIDE,INSIDE,ACROSS, andINBETWEEN. For SAS previous to 9.4M5 set to missing! -
sganno- Optional, default value is empty. keeps name of a data set for thesganno=option of the SGPLOT procedure. -
sgPlotOptions- Optional, default value isnoautolegend noborder. List of additional options values for SGPLOT procedure. -
odsGraphicsOptions- Optional, default value is empty. List of additional options values forODS Graphicsstatement. By default only the:width=,height=, andantialiasmax=are modified.
Stat related options:
-
VSCALE- Optional, default valueProportion. Specifies the scale of the vertical axis. Allowed values arePROPORTION,PERCENT, andCOUNT.PROPORTIONscales the data in units of proportion of observations per data unit.PERCENTscales the data in units of percent of observations per data unit.COUNTscales the data in units of the number of observations per data unit. -
KERNEL_K- Optional, default valueNORMAL. Specifies type of kernel function to compute kernel density estimates. Allowed values areNORMAL,QUADRATIC, andTRIANGULAR. -
KERNEL_C- Optional, default value1. Specifies standardized bandwidth parameter C to compute kernel density estimates. Allowed values are between0and1,
Other options:
cleanTempData- Optional, default value1. Indicates if temporary data sets should be deleted.
NOTES:
-
Default value of the
titleoption is:%nrstr(title1 JUSTIFY=C "Rain Cloud plot for &list_g. by " %unquote(&xLabel.);)Use the%str()or%nrstr()macro-function to handle special characters. The%unquote()is used when resolving the parameter. -
Default value of the
footnoteoption is:%nrstr(footnote1 JUSTIFY=L COLOR=lightGray HEIGHT=1 "by RainCloudPlot macro from the BasePlus package";)Use the%str()or%nrstr()macro-function to handle special characters. The%unquote()is used when resolving the parameter. -
The
catLabelsandxLabelsshould be quoted comma separated lists enclosed with brackets, e.g.catLabels=("Continent of Origin", "Car Type"), see Example below. -
The
catLabelAttrsandxLabelAttrsshould be space separated lists ofkey=valuepairs, e.g.xLabelAttrs=size=12 color=Pink weight=bold, see Example below. -
Kernel density estimates and basic statistics are calculated with
PROC UNIVARIATE. -
Plot is generated by
PROC SGPLOTwithBAND,SCATTE, andPOLYGONplots. -
After execution the ODS graphics dimension parameters are set to
800pxby600px. -
SAS notes (
NOTE:) are disabled for the execution time. -
List of predefined colours is:
BlueViolet,RoyalBlue,OliveDrab,Gold,HotPink,Crimson,
MediumPurple,CornflowerBlue,YellowGreen,Goldenrod,Orchid,IndianRed.
BOX-AND-WHISKERS PLOT:
The box-and-whiskers plot has the following interpretation:
- left vertical bar indicates the minimum,
- left whisker line starts at
max(Q1 - 1.5IQR, minimum)and ends at lower quartile (Q1), - diamond indicates mean,
- vertical bar inside of the box indicates median,
- right whisker line starts at upper quartile (Q3) and ends at
min(Q3 + 1.5IQR, maximum), - right vertical bar indicates the maximum.
With above setup it may happen that there is a gap between the minimum marker and the beginning of the left whisker or there is a gap between the end of the right whisker and the maximum marker. See examples below.
EXAMPLES AND USECASES:
EXAMPLE 1. Simple Rain Cloud Plot for a have dataset:
data have;
g = "Aaa";
do _N_ = 1 to 50;
x = rannor(42);
output;
end;
g = "Bb";
do _N_ = 1 to 120;
select (mod(_N_,9));
when(1,2,3,4,5) x = 0.5*rannor(42)+1;
when(6,7,8) x = 0.5*rannor(42)+3;
otherwise x = 0.5*rannor(42)+5;
end;
output;
end;
g = "C";
do _N_ = 1 to 60;
x = 3*rannor(42)+7;
output;
end;
run;
%RainCloudPlot(have, g, x)
EXAMPLE 2. Rain Cloud plot for sashelp.cars dataset
with groups by Origin or Type
for Invoice variables:
%RainCloudPlot(
sashelp.cars(where=(Type ne "Hybrid"))
, Origin Type
, Invoice
, HeightPX=300
, y2axisLevels=3
, catLabels=("Continent of Origin", "Car Type")
, xLabels="Invoice, [$]"
, xLabelAttrs=size=12 color=Pink weight=bold
)
EXAMPLE 3. Rain Cloud plot with formatted groups and annotations.
data annotation;
function="text";
label="This graph is full(*ESC*){sup '2'} of annotations!";
drawspace="graphpercent";
rotate=30;
anchor="center";
textsize=32;
x1=50;
y1=50;
textcolor="red";
justify="center";
textweight="bold";
width=100;
widthunit="percent";
run;
proc format;
value system
1="Windows"
2="MacOS"
3="Linux"
;
run;
data test;
do system = 1 to 3;
do i = 1 to 50;
x = rannor(123)/system;
output;
end;
end;
format system system.;
run;
%RainCloudPlot(test, system, x
, colorslist=CX88CCEE CX44AA99 CX117733
, formated=1
, sganno=annotation
, sgPlotOptions=noborder
, WidthPX=1000
, HeightPX=320
)
>>> %zipLibrary() macro: <<<
The zipLibrary() macro allows to zip content of a SAS library.
Files can be zipped into a single file (named as the input library) or into multiple files (named as "dataset.sas7bdat.zip"). If a file is indexed also the index file is zipped.
Source files can be deleted after compression.
Status of compression and processing time is reported.
See examples below for the details.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%zipLibrary(
lib
<,mode=>
<,clean=>
<,libOut=>
<,compression=>
)
Arguments description:
lib- Required, a name of the library to be zipped. Must be a valid SAS V7, V8, or V9 library.
-
mode = S- Optional, default value isS, indicates mode of compression generates single zip file (SINGLE/S) or multiple files (MULTI/M) -
clean = 0- Optional, default value is0, should datasets be deleted after zipping?1means yes,0means no. -
libOut =- Optional, default value is empty, output library for a single zip file. -
compression =- Optional, default value is6, specifies the compression level0to9, where0is no compression and9is maximum compression.
EXAMPLES AND USECASES:
EXAMPLE 1. Generate data:
options dlcreatedir;
libname test1 "%sysfunc(pathname(work))/test1";
libname test2 "%sysfunc(pathname(work))/test2";
libname test3 (test1 test2);
libname test4 "%sysfunc(pathname(work))/test4";
options nodlcreatedir;
%put %sysfunc(pathname(test3));
%put %sysfunc(pathname(test4));
data
test1.A(index=(model))
test1.B
test2.C
test2.D(index=(model make io=(invoice origin)))
;
set sashelp.cars;
run;
data test1.B2 / view=test1.B2;
set test1.B;
output;
output;
run;
EXAMPLE 2. Zip content of test3 library into the same location in one zip file:
%zipLibrary(test3)
EXAMPLE 3. Zip content of test3 library into the same location in multiple zip files:
%zipLibrary(test3, mode=MULTI)
EXAMPLE 4. Zip content of test3 library with maximum compression level into different location in one zip file and delete source files:
%zipLibrary(test3, clean=1, libOut=test4, compression=9)
>>> %unzipLibrary() macro: <<<
The unzipLibrary() macro allows to unzip content of a SAS library.
It is a counterpart to the %zipLibrary() macro and is not intended to work
with zip files generated by other software (though it may in some cases).
Files can be unzipped from a single file or from multiple files (named e.g. "dataset.sas7bdat.zip"). If a file is indexed also the index file is unzipped.
Source files can be deleted after decompression.
Status of decompression and processing time is reported.
See examples below for the details.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%unzipLibrary(
path
<,zip=>
<,mode=>
<,clean=>
<,libOut=>
)
Arguments description:
path- Required, a path pointing to zipped file(s) location.
-
zip =- Optional, Whenmode=Sa name of the zip file containing SAS files to be unzipped. -
mode = S- Optional, default value isS, indicates mode of decompression read from a single zip file (SINGLE/S) or from multiple files (MULTI/M) -
clean = 0- Optional, default value is0, should zip files be deleted after unzipping?1means yes,0means no. -
libOut =- Optional, default value is empty, output library for a single zip file decompression.
EXAMPLES AND USECASES:
EXAMPLE 1. Generate data:
options dlcreatedir;
libname test1 "%sysfunc(pathname(work))/test1";
libname test2 "%sysfunc(pathname(work))/test2";
libname test3 (test1 test2);
libname test4 "%sysfunc(pathname(work))/test4";
options nodlcreatedir;
%put %sysfunc(pathname(test3));
%put %sysfunc(pathname(test4));
data
test1.A(index=(model))
test1.B
test2.C
test2.D(index=(model make io=(invoice origin)))
;
set sashelp.cars;
run;
data test1.B2 / view=test1.B2;
set test1.B;
output;
output;
run;
EXAMPLE 2. Use data from Example 1.
First zip content of the test3 library
to test4 location into one zip file
and delete source files.
Next unzip test3.zip library into the
test4 location and delete the zip file.
%zipLibrary(test3, clean=1, libOut=test4)
%unzipLibrary(%sysfunc(pathname(test4)), zip=test3, clean=1)
EXAMPLE 3. Use data from Example 1.
First zip content of the test1 library
into multiple zip files and delete source files.
Next unzip *.zip files in test1
location and delete zipped files
%zipLibrary(test1, mode=M, clean=1)
%unzipLibrary(%sysfunc(pathname(test1)), mode=M, clean=1)
EXAMPLE 4. First zip content of the sashelp library
into work library.
Next unzip sashelp.zip file in work
location and delete zip file.
%zipLibrary(sashelp, mode=S, clean=0, libOut=work)
%unzipLibrary(%sysfunc(pathname(work)), zip=sashelp, mode=S, clean=1)
>>> %LDSN() macro: <<<
The LDSN (Long DataSet Names) macro function allows to use an "arbitrary" text string to name a dataset.
The LDSN macro has some limitation described below, to overcome them another macro, with different name: LDSNM (Long DataSet Names Modified) was created. See its description to learn how to use it.
The idea for the macro came from the following story:
Good friend of mine, who didn't use SAS for quite some time, told me that he lost a few hours for debugging because he forgot that the SAS dataset name limitation is 32 bytes.
I replied that it shouldn't be a problem to do a workaround
for this inconvenience with a macro and the MD5() hashing function.
I said: The macro should take an "arbitrary string" for a dataset
name, convert it, with help of MD5(), to a hash digest, and
create a dataset with an "artificial" hex16. formated name.
Starting with something like this:
data %LDSN(work. peanut butter & jelly with a hot-dog in [a box] and s*t*a*r*s (drop = sex rename=(name=first_name) where = (age in (12,13,14))) );
set sashelp.class;
run;
the macro would do:
%sysfunc(MD5(peanut butter & jelly with a hot-dog in [a box] and s*t*a*r*s), hex16.)
and (under the hood) return and execute the following code:
data work.DSN_41D599EF51FBA58_(drop = sex rename=(name=first_name) where = (age in (12,13,14))) ;
set sashelp.class;
run;
Also in the next data step user should be able to do:
data my_next_data_step;
set %DSN(work. peanut butter & jelly with a hot-dog in [a box] and s*t*a*r*s);
run;
and work without the "dataset-name-length-limitation" issue.
See examples below for the details.
The %LDSN() macro executes like a pure macro code.
Known "Limitations":
-
dataset name cannot contain dots (
.) since they are used as separators! -
dataset name cannot contain round brackets(
(and)) since they are used as separators (but[]and{}are allowed)! -
dataset name cannot contain unpaired quotes (
'and"), text:a "hot-dog"is ok, butJohn's dogis not!
Behaviour:
-
dataset name text is converted to upcase
-
dataset name text leading and trailing spaces are ignored, e.g. the following will give the same hash digest:
%ldsn(work.test),%ldsn( work.test),%ldsn(work.test ),%ldsn(work .test),%ldsn(work. test),%ldsn(work . test). -
macro calls of the form:
data %LDSN(); run;,data %LDSN( ); run;,data %LDSN( . ); run;or evendata %LDSN( . (keep=x)); run;are resolved to empty string, so the result is equivalent todata; run;
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%LDSN(
arbitrary text string (in line with limitations)
)
The text string is concider as "fully qualified dataset name", i.e. macro
assumes it may contain library as prefix and data set options as sufix.
See the %LDsNm() macro for comparison.
EXAMPLES AND USECASES:
EXAMPLE 1.
options nomprint source nomlogic nosymbolgen ls = max ps = max;
data %LDSN( work. peanut butter & jelly with a "Hot-Dog" in [a box], popcorn, and s*t*a*r*s (drop = sex rename=(name=first_name) where = (age in (12,13,14))) );
set sashelp.class;
run;
proc print data = %LDSN( work. peanut butter & jelly with a "Hot-Dog" in [a box], popcorn, and s*t*a*r*s );
run;
data MyNextDataset;
set %LDSN( work. peanut butter & jelly with a "Hot-Dog" in [a box], popcorn, and s*t*a*r*s );
where age > 12;
run;
>>> %LDSNM() macro: <<<
The LDSNM (Long DataSet Names Modified) macro function allows to use an "arbitrary" text string to name a dataset.
The LDSN macro had some limitation (see its documentation), to overcome them
another %LDSNM() (Long DataSet Names Modified) macro was created.
The main idea behind the %LDSNM() is the same as for %LDSN() - see the description there.
The %LDSNM() macro works differently than the %LDSN() macro.
The %LDSN() macro assumes that both libname and dataset options are
be passed as elements inside the macro argument, together with the data set name. E.g.
data %LDSN( WORK.peanut butter & jelly with a hot-dog in [a box] and s*t*a*r*s (drop = sex) );
set sashelp.class;
run;
The %LDSNM() macro, in contrary, assumes that both libname and dataset options are
passed outside the macro parameter, i.e.
data WORK.%LDSNM( peanut butter & jelly with a hot-dog in [a box] and s*t*a*r*s ) (drop = sex);
set sashelp.class;
run;
This approach overcomes some limitations the LDSN has.
The additional feature of the %LDSNM() is that when the macro is called,
a global macrovariable is created.
The macro variable name is the text of the hashed data set name.
The macro variable value is the text of the unhashed data set name (i.e. the argument of the macro).
For example the following macro call:
data %LDSNM(John "x" 'y' dog);
set sashelp.class;
where name = 'John';
run;
creates macro variable with name DSN_BF1F8C4D6495B34A_ and with value: JOHN "X" 'Y' DOG.
The macrovariable is useful when combined with symget() function and
the indsname= option to get the original text string value back,
like in this example:
data test;
set %LDSNM(John "x" 'y' dog) indsname = i;
indsname = symget(scan(i,-1,"."));
run;
See examples below for the details.
The %LDSN() macro executes like a pure macro code.
Known "Limitations":
-
dataset name cannot contain unpaired round brackets(
(and)) (but unmatched[]and{}are allowed)! -
dataset name cannot contain unpaired quotes (
'and"), text:a "hot-dog"is ok, butJohn's dogis not!
Behaviour:
-
dataset name text is converted to upcase
-
dataset name text leading and trailing spaces are ignored, e.g. the following will give the same hash digest:
%ldsn(test),%ldsn( test),%ldsn(test ). -
macro calls of the form:
data %LDSN(); run;ordata %LDSN( ); run;are resolved to empty string, so the result is equivalent todata; run; -
created macrovariable is global in scope.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%LDSNM(
arbitrary text string (in line with limitations)
)
The text string is considered as "only dataset name", i.e. the macro does not
assume it contains library as prefix or data set options as suffix.
See the %LDSN() macro for comparison.
EXAMPLES AND USECASES:
EXAMPLE 1.
data %LDSNM(John "x" 'y' & dog);
set sashelp.class;
where name = 'John';
run;
data %LDSNM(John "x"[ 'y' & dog);
set sashelp.class;
where name = 'John';
run;
data %LDSNM(John "x" 'y'} & dog);
set sashelp.class;
where name = 'John';
run;
EXAMPLE 2.
data work.%LDsNm( peanut butter & jelly, a hot-dog in [a box], and s(*)t(*)a(*)r(*)s!! ) (drop = sex rename=(name=first_name) where = (age in (12,13,14)))
;
set sashelp.class;
run;
data test;
set work.%LDsNm( peanut butter & jelly, a hot-dog in [a box], and s(*)t(*)a(*)r(*)s!! ) indsname=i;
indsname=symget(scan(i,-1,"."));
run;
EXAMPLE 3.
data work.%LDsNm( . );
set sashelp.class;
run;
data %LDsNm( );
set sashelp.class;
run;
data %LDsNm();
set sashelp.class;
run;
>>> %LVarNm() macro: <<<
The LVarNm() macro function works like the LDSN() macro function, but for variables. Supported by LVarNmLab() macro function which allows to remember "user names" in labels.
The motivation for the macro was similar to that for the LDSN() macro.
See examples below for the details.
The %LVarNm() macro executes like a pure macro code.
Known "Limitations":
- variable name cannot contain unpaired quotes (
'and"), text:a "hot-dog"is ok, butJohn's dogis not!
Behaviour:
-
variable name text is converted to upcase
-
variable name text leading and trailing spaces are ignored, e.g. the following will give the same hash digest:
%LVarNm(test),%LVarNm( test),%LVarNm(test ).
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%LVarNm(
arbitrary text string (in line with limitations)
)
EXAMPLES AND USE CASES:
EXAMPLE 1.
options ls=max;
data test;
%LVarNmLab( peanut butter & jelly with a "Hot-Dog" in [a box], popcorn, and s*t*a*r*s )
do %LVarNm( peanut butter & jelly with a "Hot-Dog" in [a box], popcorn, and s*t*a*r*s ) = 1 to 10;
y = 5 + %LVarNm( peanut butter & jelly with a "Hot-Dog" in [a box], popcorn, and s*t*a*r*s ) * 17;
output;
end;
run;
data test2;
set test;
where %LVarNm( peanut butter & jelly with a "Hot-Dog" in [a box], popcorn, and s*t*a*r*s ) < 5;
run;
EXAMPLE 2.
data test3;
%LVarNmLab() = 17;
%LVarNm() = 17;
%LVarNm( ) = 42;
%LVarNm( ) = 303;
run;
EXAMPLE 3.
data test3;
%LVarNm(test) = 1;
%LVarNm( test) = 2;
%LVarNm(test ) = 3;
run;
EXAMPLE 4.
data test4;
array X[*] %LVarNm(some strange! name)_0 - %LVarNm(some strange! name)_10;
do i = lbound(X) to hbound(X);
X[i] = 2**(i-1);
put X[i]=;
end;
run;
>>> %LVarNmLab() macro: <<<
The LVarNmLab() macro function supports LVarNm() and allows to remember "user names" in labels.
The motivation for the macro was similar one as for the LDSN() macro.
See examples in LVarNm() documentation for the details.
The %LVarNmLab() macro executes like a pure macro code.
Known "Limitations":
- variable name cannot contain unpaired quotes (
'and"), text:a "hot-dog"is ok, butJohn's dogis not!
Behaviour:
-
variable name text is converted to upcase
-
variable name text leading and trailing spaces are ignored, e.g. the following will give the same hash digest:
%LVarNmLab(test),%LVarNmLab( test),%LVarNmLab(test ).
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%LVarNmLab(
arbitrary text string (in line with limitations)
)
>>> %bpPIPE() macro: <<<
The bpPIPE() [Base Plus PIPE] macro executes OS command and print to the log output of the execution.
Under the hood it uses _ filename reference to PIPE device.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%bpPIPE( <OS command goes here> )
Arguments description:
- NO Arguments - Everything inside brackets is treated as an OS command.
EXAMPLES AND USECASES:
EXAMPLE 1. List, to the log, content of D and C drives:
%bpPIPE(D: & dir & dir "C:\")
EXAMPLE 2. List, to the log, content of home directory:
%bpPIPE(ls -halt ~/)
>>> %dirsAndFiles() macro: <<<
The %dirsAndFiles() macro allows to extract info about all files
and subdirectories of a given root directory.
The extracted info may be just a list of files and subdirectories or, if
the details= parameter is set to 1, additional operating system information
is extracted (information is OSS dependent and gives different results for Linux
and for Windows)
The extracted info can be narrowed down to files (keepFiles=1) or to
directories (keepDirs=1) if need be.
The extracted info can be presented in wide or long format (longFormat=1).
The extracted info for files can be narrowed down to only files with particular
extension, for example: fileExt=sas7bdat.
The extracted info can be narrowed down maximal path depth
by setting up the maxDepth= parameter.
See examples below for the details.
REFERENCES:
The macro is based on Kurt Bremser's "Talking to Your Host" article presented at WUSS 2022 conference.
The article is available here and also as an additional content of this package. The paper was awarded the "Best Paper Award - Programming".
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%dirsAndFiles(
root
<,ODS=>
<,details=>
<,keepDirs=>
<,keepFiles=>
<,longFormat=>
<,fileExt=>
<,maxDepth=>
)
Arguments description:
root- Required, path to be searched for information.
-
ODS=work.dirsAndFilesInfo- Optional, output data set, name of a dataset to store information. -
details=0- Optional, indicates if detailed info will be collected,1= yes,0= no. -
keepDirs=1- Optional, indicates if directories info will be collected,1= yes,0= no. -
keepFiles=1- Optional, indicates if files info will be collected,1= yes,0= no. -
longFormat=0- Optional, indicates if output be in long format,1= yes,0= no. -
fileExt=- Optional, if not missing then indicates file extension to filter out results. -
maxDepth=0- Optional, if not zero then indicates maximum depth of search in the root path.
EXAMPLES AND USECASES:
EXAMPLE 1. Get list of files and directories:
%dirsAndFiles(C:\SAS_WORK\,ODS=work.result1)
EXAMPLE 2. Get detailed info:
%dirsAndFiles(C:\SAS_WORK\,ODS=work.result2,details=1)
EXAMPLE 3. Get only files info:
%dirsAndFiles(C:\SAS_WORK\,ODS=work.result3,keepDirs=0)
%dirsAndFiles(C:\SAS_WORK\,ODS=work.result5,keepDirs=0,details=1)
EXAMPLE 4. Get only directories info:
%dirsAndFiles(C:\SAS_WORK\,ODS=work.result4,keepFiles=0)
%dirsAndFiles(C:\SAS_WORK\,ODS=work.result6,keepFiles=0,details=1)
EXAMPLE 5. Filter out by sas extension:
%dirsAndFiles(~/,ODS=work.result7,fileExt=sas)
%dirsAndFiles(~/,ODS=work.result8,fileExt=sas,details=1)
EXAMPLE 6. Keep result in the long format:
%dirsAndFiles(~/,ODS=work.result9,details=1,longFormat=1)
EXAMPLE 7. Get info for maximum depth of 2:
%dirsAndFiles(C:\SAS_WORK\,ODS=work.result10,details=1,maxDepth=2)
EXAMPLE 8. How locked/unavailable files are handled:
%dirsAndFiles(%sysfunc(pathname(WORK)),ODS=work.result11,details=1)
EXAMPLE 9. Not existing directory:
%dirsAndFiles(%sysfunc(pathname(WORK))/noSuchDir,ODS=work.result12,details=1)
>>> %repeatTxt() macro: <<<
The repeatTxt() macro function allows to repeat n
times a text string separated by string s=.
The repeatTxt() returns unquoted value [by %unquote()].
See examples below for the details.
The %repeatTxt() macro executes like a pure macro code.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%repeatTxt(
text
<,n>
<,s=>
)
Arguments description:
-
text- Required, a text to be repeated. -
n- Required/Optional, the number of repetitions. If missing then set to1;
s = %str( )- Optional, it is a separator between repeated elements. Default value is space.
EXAMPLES AND USECASES:
EXAMPLE 1. Simple repetition of dataset name:
options mprint;
data work.test5;
set
%repeatTxt(sashelp.cars, 5)
;
run;
EXAMPLE 2. Simple repetition of data step:
options mprint;
%repeatTxt(data _null_; set sashelp.cars; run;, 3)
EXAMPLE 3. "Nice" output:
%put %repeatTxt(#,15,s=$) HELLO SAS! %repeatTxt(#,15,s=$);
EXAMPLE 4. Macroquote a text with commas:
%repeatTxt(
%str(proc sql; create table wh as select weight,height from sashelp.class; quit;)
,3
)
EXAMPLE 5. Empty n repeats text one time:
options mprint;
data work.test1;
set
%repeatTxt(sashelp.cars)
;
run;
EXAMPLE 6. Dynamic "formatting":
%macro printWork();
%let work=%sysfunc(pathname(work));
%put +%repeatTxt(~,%length(&work.)+5,s=)+;
%put {&=work.};
%put +%repeatTxt(~,%length(&work.)+5,s=)+;
%mend printWork;
%printWork()
>>> %intsList() macro: <<<
The intsList() macro function allows to print a list of
integers starting from start up to end incremented by by
and separated by sep=.
If start, end or by are non-integers the are converted to integers.
See examples below for the details.
The %intsList() macro executes like a pure macro code.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%intsList(
start
<,end>
<,by>
<,sep=>
)
Arguments description:
-
start- Required, the first value of the list. Ifendis missing then the list is generated from 1 tostartby 1. -
end- Required/Optional, the last value of the list. -
by- Required/Optional, the increment of the list. If missing then set to1. Cannot be equal to0.
s = %str( )- Optional, it is a separator between elements of the list. Default value is space.
EXAMPLES AND USECASES:
EXAMPLE 1. Simple list of integers from 1 to 10 by 1:
%put %intsList(10);
EXAMPLE 2. Ten copies of sashelp.class in test11 to test20:
data
%zipEvalf(test, %intsList(11,20))
;
set sashelp.class;
run;
EXAMPLE 3. Non-integers are converted to integers, the list is 1 3 5:
%put %intsList(1.1,5.2,2.3);
EXAMPLE 4. A list with a separator:
%put %intsList(1,5,2,sep=+);
>>> %letters() macro: <<<
The letters() macro function allows to print a list of Roman
letters starting from start up to end incremented by by.
The letters list can be uppercases or lowercase (parameter c=U or c=L),
can be quoted (e.g. q="" or q=[]), and can be separated by s=.
Values of start, end, and by have to be integers in range between 1 ad 26.
See examples below for the details.
The %letters() macro executes like a pure macro code.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%letters(
range
<,c=>
<,q=>
<,s=>
)
Arguments description:
range- Required, letters selector in formstart:end:by. Lists letters fromstarttoendbyby. Values ofstart,end, andbyare separated by colon and must be between 1 ad 26. If value is outside range it is set tostart=1,en=26, andby=1. Ifendis missing then is set to value ofstart. Ifendis smaller thanstartlist is reversed
-
c = U- Optional, it is a lowercase letters indicator. SelectLorl. Default value isUfor upcase. -
q =- Optional, it is a quite around elements of the list. Default value is empty. Use%str()for one quote symbol. If there are multiple symbols, only the first and the second are selected as a preceding and trailing one, e.g.q=[]gives[A] [B] ... [Z]. -
s = %str( )- Optional, it is a separator between elements of the list. Default value is space.
EXAMPLES AND USECASES:
EXAMPLE 1. Space separated list of capital letters from A to Z:
%put %letters(1:26:1);
%put %letters();
EXAMPLE 2. First, thirteenth, and last letter:
%put %letters(1) %letters(13) %letters(26);
EXAMPLE 3. Every third lowercase letter, i.e. a d g j m p s v y:
%put %letters(1:26:3,c=L);
EXAMPLE 4. Lists with separators:
%put %letters(1:26:2,s=#);
%put %letters(1:26:3,s=%str(;));
%put %letters(1:26:4,s=%str(,));
%put %letters(1:26,s=);
%put %letters(1:26,s==);
%put %letters(1:26,s=/);
EXAMPLE 5. Every second letter with quotes:
%put %letters(1:26:2,q=%str(%'));
%put %letters(2:26:2,q=%str(%"));
%put %letters(1:26:2,q='');
%put %letters(2:26:2,q="");
%put %letters(1:26:2,q=<>);
%put %letters(2:26:2,q=\/);
%put %letters(1:26:2,q=());
%put %letters(2:26:2,q=][);
EXAMPLE 6. Mix of examples 4, 5, and 6:
%put %letters(1:26,c=L,q='',s=%str(, ));
EXAMPLE 7. If end is smaller than start list is reversed:
%put %letters(26:1:2,q='');
>>> %splitDSIntoBlocks() macro: <<<
The splitDSIntoBlocks() macro allows to split the set dataset into blocks
of size blockSize in datasets: prefix1 to prefixN.
The last dataset may have less observations then the blockSize.
Macro covers BASE engine (v9, v8, v7, v6) and SPDE engine datasets.
See examples below for the details.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%splitDSIntoBlocks(
blockSize
<,set>
<,prefix>
)
Arguments description:
-
blockSize- Required, the size of the block of data, in other words number of observations in one block of split data. Block size must be positive integer. -
set- Required/Optional, the name of the dataset to split. If empty then&syslast.is used. -
prefix- Required/Optional, the name-prefix for new datasets. If missing then set topart.
EXAMPLES AND USECASES:
EXAMPLE 1. Split sashelp.class into 5 elements datasets ABC1 to ABC4:
%splitDSIntoBlocks(5,sashelp.class,ABC)
EXAMPLE 2. By default splits the _last_ dataset into part1 to partN datasets:
data lastData;
set sashelp.cars;
run;
%splitDSIntoBlocks(123)
EXAMPLE 3. Works with SPDE engine too:
options dlcreatedir;
libname test "%sysfunc(pathname(work))/testSPDE";
libname test;
libname test SPDE "%sysfunc(pathname(work))/testSPDE";
data test.test;
set sashelp.cars;
run;
%splitDSIntoBlocks(100,test.test,work.spde)
>>> %splitDSIntoParts() macro: <<<
The splitDSIntoParts() macro allows to split the set dataset into parts parts
of approximately NOBS/parts size in datasets: prefix1 to prefixN.
The splitDSIntoParts() macro internally runs the splitDSIntoBlocks() macro.
Macro covers BASE engine (v9, v8, v7, v6) and SPDE engine datasets.
See examples below for the details.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%splitDSIntoParts(
parts
<,set>
<,prefix>
)
Arguments description:
-
parts- Required, the number of parts to split data into. Number of parts must be positive integer. -
set- Required/Optional, the name of the dataset to split. If empty then&syslast.is used. -
prefix- Required/Optional, the name-prefix for new datasets. If missing then set topart.
EXAMPLES AND USECASES:
EXAMPLE 1. Split sashelp.cars into 7 parts: datasets carsInParts1 to carsInParts7:
%splitDSIntoParts(7,sashelp.cars, carsInParts)
EXAMPLE 2. By default splits the _last_ dataset into part1 to part3 datasets:
data lastData;
set sashelp.cars;
run;
%splitDSIntoBlocks(3)
EXAMPLE 3. Works with SPDE engine too:
options dlcreatedir;
libname test "%sysfunc(pathname(work))/testSPDE";
libname test;
libname test SPDE "%sysfunc(pathname(work))/testSPDE";
data test.test;
set sashelp.cars;
run;
%splitDSIntoParts(3,test.test,work.spde)
>>> %filePath() macro: <<<
The filePath() macro function returns path to a file,
it is a wrapper to pathname() function for files.
See examples below for the details.
The %filePath() macro executes like a pure macro code.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%filePath(
fileref
)
Arguments description:
fileref- Required, a fileref from thefilenamestatement.
EXAMPLES AND USECASES:
EXAMPLE 1. Return path to temporary file:
filename f temp;
%put %filePath(f);
>>> %libPath() macro: <<<
The libPath() macro function returns path to a library,
it is a wrapper to pathname() function for libraries.
See examples below for the details.
The %libPath() macro executes like a pure macro code.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%libPath(
libref
)
Arguments description:
libref- Required, a libref from thelibnamestatement.
EXAMPLES AND USECASES:
EXAMPLE 1. Return path to WORK library:
%put %libPath(WORK);
EXAMPLE 2. Return path to SASHELP library:
%put %libPath(SASHELP);
>>> %workPath() macro: <<<
The workPath() macro function returns path to the WORK library,
it is a wrapper to pathname("work", "L") function.
See examples below for the details.
The %workPath() macro executes like a pure macro code.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%workPath()
Arguments description:
*) No arguments.
EXAMPLES AND USECASES:
EXAMPLE 1. Create new library inside WORK library:
options dlCreateDir;
libname NEW "%workPath()/new";
>>> %translate() macro: <<<
The translate() macro function allows to replace bytes with bytes in text string.
See examples below for the details.
The %translate() macro executes like a pure macro code.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%translate(
string
,from
,to
)
Arguments description:
-
string- Required, string to modify. -
from- Required, list of bytes to be replaced with corresponding bytes fromto. -
to- Required, list of bytes replacing corresponding bytes fromfrom.
EXAMPLES AND USECASES:
EXAMPLE 1. Replace quotes and commas with apostrophes and spaces:
%put %translate(%str("A", "B", "C"),%str(%",),%str(%' ));
EXAMPLE 2. Unify all brackets;
%put %translate(%str([A] {B} (C) <D>),{[(<>)]},(((()))));
EXAMPLE 3. Replace all digits with *:
%put %translate(QAZ1WSSX2EDC3RFV4TGB5YHN6UJM7IK8OL9P0,1234567890,**********);
EXAMPLE 4. Letters change:
%put %translate(%str(A=B),AB,BA);
>>> %tranwrd() macro: <<<
The tranwrd() macro function allows to replace substrings with other substrings in text string.
Returned string is unquoted by %unquote().
See examples below for the details.
The %tranwrd() macro executes like a pure macro code.
SYNTAX:
The basic syntax is the following, the <...> means optional parameters:
%tranwrd(
string
,from
,to
<,repeat>
)
Arguments description:
-
string- Required, string to modify. -
from- Required, substring replaced with corresponding string fromto. -
to- Required, substring replacing corresponding substring fromfrom. -
repeat- Optional, number of times the replacing should be repeated, default is 1. Useful while removing multiple adjacent characters, e.g. compress all multiple spaces (see example 2).
EXAMPLES AND USECASES:
EXAMPLE 1. Simple text replacement:
%put %tranwrd(Miss Joan Smith,Miss,Ms.);
EXAMPLE 2. Delete multiple spaces;
%put %tranwrd(%str(A B C),%str( ),%str( ),5);
EXAMPLE 3. Remove substring:
%put %tranwrd(ABCxyzABCABCxyzABC,ABC);
License
Copyright (c) since 2020 Bartosz Jablonski
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.



